The Principle of Plenitude

Asimina Arvanitaki Perimeter Institute

Plenitude

Gottfried Wilhelm Leibniz

"This best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection."

The High Energy Frontier

Particle Physics – Precision vs Energy Frontier

80% of scales unexplored

The Scales in Our Universe

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy. - Hamlet

Opportunities to probe the low energy frontier

- •Short Distance Tests
- of Gravity
- •Extra Dimensions

Dimopoulos, Kapitulnik (1997)

- Tests of Gravity
 Gravitational Wave
 detection at low frequencies
 Tests of Atom Neutrality at
 30 decimals
- Dimopoulos, Geraci (2003) Dimopoulos, Kasevich et. al.(2006-2008)

- •Axion Dark Matter Detection
- •Axion Force
- Detection

Graham et. al. (2012) AA, Geraci (2014)

Setting the Time StandardDilaton Dark MatterDetection

AA, Huang, Van Tilburg (2014)

The Mystery of Dark Matter

Models of Dark Matter

• What is it made out of?

Anything from 10^{-22} eV to 10^{70} eV in mass

• How is it produced?

• Does it have interactions other than gravitational?

Why is the Electric Dipole Moment of the Neutron Small?

The Strong CP Problem and the QCD axion

Neutron Electric Dipole Moment \sim e fm θ_{QCD}

 $L_{\rm SM} \supset \frac{g_s^2}{32\pi^2} \theta_{\rm QCD} G^a \tilde{G}^a$

Experimental bound: $\theta_{QCD} < 10^{-10}$

 $\begin{array}{l} Solution: \\ \theta_{QCD} \text{ is a dynamical field, an axion} \end{array}$

Weinberg(1978) and Wilczek (1978) Peccei and Quinn (1977)

Axion mass from QCD:

$$\begin{split} \mu_a \sim 6 \times 10^{-11} \ \mathrm{eV} \ \frac{10^{17} \ \mathrm{GeV}}{f_a} \sim (3 \ \mathrm{km})^{-1} \ \frac{10^{17} \ \mathrm{GeV}}{f_a} \\ \mathrm{f_a}: \text{axion decay constant} \end{split}$$

Elements of String Theory

A Plenitude of Massless Particles

Compactification naturally gives rise to massless particles

In the presence of non-trivial topology, non-trivial gauge field configurations can carry no energy, resulting in 4D massless particles

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

$$e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$$

while

 $\vec{B} = 0$

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy

Solenoid

 \vec{B}

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid $e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$ while

 $\vec{B} = 0$

Energy stored only inside the solenoid "Blocking out." the core still leaves a non-trivial gauge, but no mass Non-trivial gauge configuration far away carries no energy

A Plenitude of Massless Particles

- Spin-0 non-trivial gauge field configurations: String Axiverse
- Spin-1 non-trivial gauge field configurations: String Photiverse

 Fields that determine the shape and size of extra dimensions as well as values of fundamental constants: Dilatons, Moduli, Radion

Properties of Plenitude of Particles from String Theory

- They couple very weakly to the Standard Model
- They can be extremely light

• Constrained if the coupling is large enough by astrophysics, BBN, CMB...

What If DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy

Usually we think of ...

instead of...

like a WIMP

1

 $\lambda_{DM} = \frac{\hbar}{m_{DM}v}$

What If DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy

Decreasing DM Mass

 $m_{DM}v$

Equivalent to a Scalar wave

Going from DM particles to a DM "wave"

When
$$n_{DM} > \frac{1}{\lambda_{DM}^3}$$

In our galaxy this happens when $m_{DM} < 1 \text{ eV/c}^2$

we can talk about DM $\phi(x,t)$ and locally

 $\phi(t) \approx \phi_0 \cos \omega_{DM} t$

with amplitude

 $\phi_0 \propto \frac{\sqrt{\text{DM density}}}{\text{DM mass}}$

with frequency

$$\omega_{DM} \approx \frac{m_{DM}c^2}{\hbar}$$

and finite coherence

$$\delta\omega_{DM} \approx \frac{m_{DM}v^2}{\hbar} = 10^{-6}\omega_{DM}$$

Scalar DM field Production Mechanism

• The "misalignment mechanism" during inflation

Light Scalar Dark Matter

Just like a harmonic oscillator

Initial conditions set by inflation

*The story changes slightly if DM is a dark photon

Light Scalar Dark Matter Today

Scalar Dark Matter and Isocurvature Fluctuations

During Inflation

• Scalar Dark Matter carries its own fluctuation spectrum

• A discovery of tensor modes excludes large part of the parameter space

Axion Dark Matter

Some examples

• Axion-to-photon conversion (ex. ADMX)

Cavity size = Axion size

Axion Dark Matter

Some examples

• Axion Force experiments (ex. ARIADNE) and DM experiments (ex. Casper)

Dark Photon Dark Matter

Some examples

• Detected if kinetically mixed with the photon

 $\mathcal{L} \supset \epsilon F_{EM} F_{DM}$

• Detected like a photon (ex. DM Radio and ADMX) DM electric field ~ $\sqrt{\rho_{DM}}$ ~ 50 V/cm

Moduli Dark Matter

• Couple non-derivatively to the Standard Model (as well axions with CP violation)

• Examples of couplings

$$\mathcal{L} = \mathcal{L}_{SM} + \sqrt{\hbar c} \frac{\phi}{\Lambda} \mathcal{O}_{SM}$$

$$\mathcal{O}_{SM} \equiv m_e e \bar{e}, \ m_q q \bar{q}, \ G_s^2, \ F_{EM}^2, \dots$$

Fundamental constants are not really constants

Oscillating Fundamental Constants

AA, J. Juang, K. Van Tilburg (2014)

From the local oscillation of Dark Matter

Ex. for the electron mass:

$$d_{m_e}\sqrt{\hbar c}\frac{\phi}{M_{Pl}}m_ec^2e\bar{e}$$

 $M_{\rm pl}$ = 10¹⁸ GeV reduced Planck scale in energy

$$\frac{\delta m_e}{m_e} \approx \frac{d_{m_e} \phi_0}{M_{Pl}} \cos(\omega_{DM} t)$$

$$= 6.4 \times 10^{-13} \cos(\omega_{DM} t) \left(\frac{10^{-18} \text{ eV}}{m_{DM} c^2}\right) \left(\frac{d_{m_e}}{1}\right)$$

d_{me} : coupling strength relative to gravity

Fractional variation set by square root of DM abundance

Need an extremely sensitive probe...

Ultra-light Scalar Dark Matter

• Mediates new interactions in matter

• Generates a fifth force in matter

• Generates Equivalence Principle violation

Keeping the DM time with Atomic Clocks

with Junwu Huang and Ken Van Tilburg (2014)

Oscillating Atomic and Nuclear Energy Splittings due to Dark Matter

• Optical Splittings

$$\Delta E_{
m optical} \propto lpha_{EM}^2 m_e \sim {
m eV}$$

• Hyperfine Splittings

$$\Delta E_{\rm hyperfine} \propto \Delta E_{\rm optical} \alpha_{EM}^2 \left(\frac{m_e}{m_p}\right) \sim 10^{-6} \, {\rm eV}$$

• Nuclear Splittings

 $\Delta E (m_p, \alpha_s, \alpha_{EM}) \sim 1 \text{ MeV}$

DM appears as a signature in atomic (or nuclear) clocks

How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

How well can I measure the frequency of the laser when tuned to the atom?

 $\tau_{cycling}$ time that it takes to do one measurement (of order the atomic lifetime)

The Dy isotope and Rb/Cs Clock Comparison

sensitivity to α_{EM} variations

Ken Van Tilburg and the Budker group (2015)

Hees et. al (2016)

Analysis performed with existing data

Nuclear to Optical Clock Comparison

Future Sensitivity of a ²²⁹Th clock

The Sound of Dark Matter

with Ken Van Tilburg and Savas Dimopoulos (2015)

Oscillating interatomic distances

• The Bohr radius changes with DM

•
$$r_B \sim (\alpha m_e)^{-1}$$

 $\frac{\delta r_B}{r_B} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$

• The size of solids changes with DM

•
$$L \sim N (\alpha m_e)^{-1}$$

$$\frac{\delta L}{L} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$$

For a single atom $\delta r_B \sim 10^{-30}$ m Need macroscopic objects to get a detectable signal

Resonant-Mass Detectors

• In the 1960's: The Weber Bar

Fractional length variation $\delta L/L\sim 10^{-17}$

• Today: AURIGA, NAUTILUS, MiniGrail

Fractional length variation $\delta L/L \sim 10^{-23}$

Black Holes as Nature's Detectors

1 km -10 billion km

They can detect bosons of similar in size

September 14, 2015

Super-Radiance Cartoon

Black Hole Superradiance

Penrose Process

ExtraEtsgonggilaur:nRægient whenedevenssightnhasstoibeingtating hole

Photons reflected back and forth from the black hole and through the ergoregion

Superradiance for a massive boson

Damour et al; Zouros & Eardley; Detweiler; Gaina (1970s)

Particle Compton Wavelength comparable to the size of the Black Hole

Gravitational Atom in the Sky

The gravitational Hydrogen Atom

Fine-structure constant:

$$\alpha = G_{\rm N} M_{\rm BH} \mu_a = R_g \mu_a$$

Principal (n), orbital (l), and magnetic (m) quantum number for each level

Main differences from hydrogen atom:

Levels occupied by bosons - occupation number >10⁷⁷

In-going Boundary Condition at Horizon

Key Points About Superradiance

• For light axions(weak coupling) equation identical to Hydrogen atom

- Boundary conditions different:
 - Regular at the origin Ingoing (BH is absorber)

Superradiance Parametrics

Superradiance Condition

 $\omega_{\text{axion}} < m \ \Omega_+$

m: magnetic quantum number $\Omega_+:$ angular velocity of the BH

Universal Phenomenon:

Superluminal rotational motion of a conducting cylinder

Superluminal linear motion - Cherenkov radiation $1/n(\omega) < v$

Condition can be extracted from requiring that $dA_{BH} > 0$

Superradiance Parametrics

Superradiance Rate

 $\tau_{sr} \sim \! 0.6 \times 10^7 \; R_g$ for $R_g \; \mu_a \! \sim 0.4$

As short as 100 sec vs $\tau_{accretion} \sim 10^8 \, years$

When $R_g \mu_a >> 1$, $\tau_{sr} = 10^7 e^{3.7(\mu_a R_g)} R_g$ When $R_g \mu_a \ll 1$

$$\tau_{sr} = \left(\frac{24}{a}\right)(\mu_a R_g)^{-9} R_g$$

Super-Radiance Signatures GW annihilations

• Signal enhanced by the square of the occupation number of the state

$$h_{\text{peak}} \simeq 10^{-22} \left(\frac{1 \,\text{kpc}}{r}\right) \left(\frac{\alpha/\ell}{0.5}\right)^{\frac{p}{2}} \frac{\alpha^{-\frac{1}{2}}}{\ell} \left(\frac{M}{10M_{\odot}}\right)$$

• Signal duration determined by the annihilation rate (can last thousands of years)

Plenitude

Gottfried Wilhelm Leibniz

"This best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection."