Calorimetric readout of Superfluid ⁴He for sensitivity to dark matter of keV-MeV mass

Scott Hertel (U. of Massachusetts Amherst) Dan McKinsey, Junsong Lin, Vetri Velan, Andreas Biekert (UC Berkeley)

Workshop: Table-Top Experiments with Skyscraper Reach

MIT, Aug 10th, 2017

The basic WIMP hypothesis (neutrino-like interactions) -ruled out by ~1991

We keep digging down at this same mass range...

	10^{20}	
	IU	
n [zb]	10 ¹⁸	
	10 ¹⁶	
	10 ¹⁴	
ctio	10 ¹²	_Z-media
S SG	10 ¹⁰	
Cros	10 ⁸	
on o	10 ⁶	
ucle	10^{4}	
P-n	10^{2}	
VIM	10^{0}	
>	10 ⁻²	
	10 ⁻⁴ ke	eV

The basic WIMP hypothesis (neutrino-like interactions) -ruled out by ~1991

We keep digging down at this same mass range...

...meaning, we keep broadening the interaction type prior to increasing un-natural versions of weak interaction.

The basic WIMP hypothesis (neutrino-like interactions) -ruled out by ~1991

We keep digging down at this same mass range...

...meaning, we keep broadening the interaction type prior to increasing un-natural versions of weak interaction.

Not sustainable for ever: 1. increasingly un-natural 2. unavoidable backgrounds

Time to broaden other priors?

One way to loosen the priors:

- 1) retain assumption of thermal production
- 2) stop assuming we already know all the force mediators

First order effects:

- more unknowns (more theories)
- light mediators avoid standard collider searches

- thermal production works down to ~keV mass scale (note: new 'freeze-in' modes)

DM kinetic energies

DM particle velocities cut off by (local) escape velocity: $v_{max} \simeq 540$ km/s

 $KE_{max} \simeq 1/2 m_{DM} v_{max}^2$

proportionality of m_{DM} to KE_{max}

 $MeV/c^2 \rightarrow eV$ $GeV/c^2 \rightarrow keV$ $TeV/c^2 \rightarrow MeV$

nuclear recoil energies

when $m_{DM} \simeq m_{target}$, efficient coupling of KE_{DM} into target

order-GeV mass \rightarrow order-keV recoil endpoint energies order-MeV mass → order-meV recoil endpoint energies

nuclear recoil energies

when $m_{DM} \simeq m_{target}$, efficient coupling of KE_{DM} into target

order-GeV mass → order-keV recoil endpoint energies order-MeV mass → order-meV recoil endpoint energies

nuclear recoil energies

when $m_{DM} \simeq m_{target}$, efficient coupling of KE_{DM} into target

order-GeV mass \rightarrow order-keV recoil endpoint energies order-MeV mass \rightarrow order-meV recoil endpoint energies

two punchlines:

1) light target particle desirable meV-scale excitations desirable 2)

the recent cresst/v-cleus example

arXiv:1707.06749v2

20 eV threshold (on oxygen \rightarrow 140 MeV mass threshold)

above ground, no shielding, with ~0.2Bq Fe55 source

my two cents: we are entering new regime

sensitivity: energy *threshold* matters more than target *mass* backgrounds: dark counts & noise matter more than radiogenics

ie, we are entering the tabletop regime of this workshop

Excitations in superfluid ⁴He

eV-scale excitations:

Excimers (He₂*)

singlet: ~ns halflife (observable as scintillation) triplet: 13s halflife (observable as ballistic molecules) (+ a little IR from excitations to higher atomic states)

meV-scale excitations:

phonons, R- rotons, R+ rotons (observable as athermal evaporation)

Excitations in superfluid ⁴He : partitioning

4He: atomic cross sections well measured, well understood.

Recoil energy partitioning can be estimated from the ground up.

NR and ER have quite different partitioning in a three-way partition (kinetic + triplet + singlet).

Beauty of calorimetric sensors: *All* recoil energy appears as observable excitations.

Reading out Singlet Excitations (16eV photons)

Detecting photons is a standard calorimetry application.

Operating calorimetry in LHe: less standard. Possible, thanks to

- 1) huge LHe-solid Kapitza resistance
- 2) fast conversion of photon energy in calorimeter to trapped excitations (eg, Al quasiparticles)

simple detector: box with calorimetry inside

Reading Out Triplet Excitations (ballistic molecules)

Superfluid \rightarrow friction-free ballistic propagation

Touching a solid supplies mechanism for decay

Some fraction of energy appears in surface -energy transferred through electron exchange (not phonons) -fraction dependent on material's electron density of states simple detector: box with calorimetry inside

Reading Out Triplet Excitations (ballistic molecules)

Superfluid \rightarrow friction-free ballistic propagation

Touching a solid supplies mechanism for decay

Some fraction of energy appears in surface -energy transferred through electron exchange (not phonons) -fraction dependent on material's electron density of states

simple detector: box with calorimetry inside

Excitations in superfluid ⁴He

eV-scale excitations:

Excimers (He₂*)

singlet: ~ns halflife (observable as scintillation) 13s halflife (observable as ballistic molecules) triplet: (+ a little IR from excitations to higher atomic states)

meV-scale excitations:

phonons, R- rotons, R+ rotons (observable as athermal evaporation)

⁴He Quasiparticles

Things to know:

meV-scale (hear 'MeV-scale DM'...)

Not on a crystal lattice (isotropic dispersion)

Ballistic propagation

Most downconversions forbidden

Multiple 'flavors' with distinguishing characteristics:

- slope is velocity
- R- propagation opposite to momentum

Below atomic excitation energy, *all* recoil energy appears in these kinetic modes

energy [meV]

⁴He Quasiparticles

Don't let the word 'roton' distract you.

Illustration is incorrect in two ways: -rotons are few-atom-scale kinetic excitations -rotons do not carry angular momentum.

sufficient shorthand: rotons are "high-momentum phonons"

Reading Out ⁴He Quasiparticles

crossing into solid extremely suppressed (Kapitza resistance)

Reading Out ⁴He Quasiparticles (quantum evaporation)

crossing into solid extremely suppressed (Kapitza resistance)

...saved by significant probability of **quantum evaporation** at vacuum

Reading Out ⁴He Quasiparticles (quantum evaporation)

crossing into solid extremely suppressed (Kapitza resistance)

...saved by significant probability of **quantum evaporation** at vacuum

Reading Out ⁴He Quasiparticles (quantum evaporation) \rightarrow van der Waals gain

- Typical helium-solid binding energy: ~10meV
- Higher binding energies exist (graphene-fluorine: 42.9meV)

- most recoil energy is in roton modes (DOS ~ p^2)
- each 1 meV roton energy becomes ~40 meV observation
 - → x40 gain

'Shovel Ready' Technology Years Ago

R&D for the proposed HERON pp neutrino observatory

now: technology newly motivated by light dark matter

ER/NR discrimination using excimer production

Toy MC

Production Statistics

Detection Efficiencies

Result:

Simulated Backgrounds

backgrounds included:		
		10 ²
-neutrino nuclear coherent scattering -gamma backgrounds copy		10 ⁰
SuperCDMS & DAMIC projections		
https://arxiv.org/abs/1610.00006 -note: LHe is naturally itself radiopure		10-4
	(n)	10-6
two details: -excimers allow ER discrimination (>20eV) -newly-discussed gamma-NR background		10 ⁻⁸
		10 ⁴ 10 ²
Robinson Phys. Rev. D 95, 021301 (2017)		100
arguments for low dark count rate:		
		10-4
-calorimetry, no applied potential energies -low-mass calorimeter: low-energy clamps		
-superfluid target: highly isolated from environment		10 ⁻⁸

Nuclear Recoil Sensitivity

gen1: "shovel ready"

10 eVr threshold, 1 kg-y

assuming 40meV per evaporated atom (graphene-fluorine) 20 eV calorimeter threshold w/ 5% evap. efficiency

gen2: "feasible after R&D"

100 meVr threshold, 10 kg-y

assuming 40meV per evaporated atom (graphene-fluorine) 1 eV calorimeter threshold w/ 25% evap. efficiency

gen3: "theoretically possible"

1 meVr threshold, 100 kg-y limit of single-atom counting (~40meV calorimeter threshold)

Nuclear Recoil Sensitivity

rarely-considered but newly-relevant: earth shielding at large cross-sections

the nuclear mass (dispersion relation) is very different from the DM mass (dispersion relation)

this talk has so far been "we have a mismatch, but we have strategies to mitigate that mismatch."

~10x energy boost from light nucleus ~10x energy boost from van der Waals gain

three-body option #1: nuclear bremsstrahlung

Kouvaris, Pradler: arXiv:1607.01789 McCabe: arXiv:1702.04730v1

trick: outgoing [nucleus+ γ] can have wide range of [E,p]

no longer limited to nuclear dispersion relation

what you get: recoil E can be up to DM KE (and E_{γ} can be up to recoil E)

what you pay: large phase space suppression

three-body option #2: multiple outgoing phonons

Schutz, Zurek: arXiv:1604.08206 Knappen, Lin, Zurek arXiv:1611.06228

trick:

outgoing multi-phonon states can have wide range of [E,p]

no longer limited to phonon dispersion relation

what you get: recoil E can be up to DM KE

what you pay: large phase space suppression

three-body option #2: multiple outgoing phonons

as observed in neutron scattering data

Nuclear Recoil Sensitivity

result of double-roton diagram:

bypass the He atom dispersion relation

sensitivity to keV-scale masses

starting up some new efforts

McKinsey Group at Berkeley

4He scintillation yield at low energies

Hertel Group at U. Mass. (no table yet)

designing, setting up 4He evaporation channel test bed

goals: evaporation channel R&D evaporation channel calibration (bring to n facility) early DM limits from on-campus lab ("*v*-cleus style")

Summary

Ideal technology for low-mass NR

-meV-scale long-lived kinetic excitations -light-element material -suppressed "dark counts" in superfluid

Shovel-ready technology

-4He evaporation: HERON -calorimeters: CDMS, CRESST, etc.

Small and cheap, \$1M-scale

- small target (grams-to-kg)
- few channels (6+)

