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understanding the WIMP as one model among many

The basic WIMP hypothesis
(neutrino-like interactions)
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understanding the WIMP as one model among many

The basic WIMP hypothesis
(neutrino-like interactions)
-ruled out by ~1991

WIMP-nucleon cross section [ zb |
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understanding the WIMP as one model among many

The basic WIMP hypothesis
(neutrino-like interactions)
-ruled out by ~1991

We keep digging down at this
same mass range...

WIMP-nucleon cross section [ zb |
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understanding the WIMP as one model among many

The basic WIMP hypothesis
(neutrino-like interactions)
-ruled out by ~1991

We keep digging down at this
same mass range...

...meaning, we keep
broadening the interaction type
prior to increasing un-natural
versions of weak interaction.
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understanding the WIMP as one model among many

The basic WIMP hypothesis
(neutrino-like interactions)
-ruled out by ~1991

We keep digging down at this
same mass range...

...meaning, we keep
broadening the interaction type
prior to increasing un-natural
versions of weak interaction.

Not sustainable for ever:
1. Increasingly un-natural
2. unavoidable backgrounds

Time to broaden other priors?
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understanding the WIMP as one model among many

One way to loosen the priors:
1) retain assumption of thermal production
2) stop assuming we already know all the force mediators

First order effects:
- more unknowns (more theories)
- thermal production works down to ~keV mass scale (note: new ‘freeze-in’ modes)
- light mediators avoid standard collider searches



understanding the WIMP as

one model among many
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DM Kkinetic energies

DM particle velocities cut off by (local) escape velocity: Vmax = 540 km/s

KEmax = 1/2 MDM Vmax?
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nuclear recoll energies

when mpm = Mmtarget , €fficient coupling of KEpwm into target

order-GeV mass — order-keV recoil endpoint energies
order-MeV mass — order-meV recoil endpoint energies
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nuclear recoll energies

when mpm = Mmtarget , €fficient coupling of KEpwm into target

order-GeV mass — order-keV recoil endpoint energies
order-MeV mass — order-meV recoil endpoint energies
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nuclear recoll energies

when mpm = Mmtarget , €fficient coupling of KEpwm into target

order-GeV mass — order-keV recoil endpoint energies
order-MeV mass — order-meV recoil endpoint energies

two punchlines:

1) light target particle desirable
2) meV-scale excitations desirable
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the recent cresst/v-cleus example oo
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Excitations in superfluid “He

eV-scale excitations:

Excimers (He2>*)

singlet: ~ns halflife (observable as scintillation)
triplet: 13s halflife (observable as ballistic molecules)

(+ a little IR from excitations to higher atomic states)

meV-scale excitations:

phonons, R- rotons, R+ rotons
(observable as athermal evaporation)



Excitations in superfluid *He : partitioning

Nuclear Recoil
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Reading out Singlet Excitations (16eV photons)

Detecting photons is a standard calorimetry application.

simple detector: box with calorimetry inside

Operating calorimetry in LHe: less standard.
Possible, thanks to
1) huge LHe-solid Kapitza resistance
2) fast conversion of photon energy in calorimeter
to trapped excitations (eg, Al quasiparticles)

16eV
photon
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Reading Out Triplet Excitations (ballistic molecules)

Superfluid = friction-free ballistic propagation | | o
simple detector: box with calorimetry inside

Touching a solid supplies mechanism for decay

Some fraction of energy appears in surface
-energy transferred through electron exchange (not phonons)

-fraction dependent on material’s electron density of states ballistic
molecule

S SEBE S




Reading Out Triplet Excitations (ballistic molecules)

Superfluid = friction-free ballistic propagation | | o
simple detector: box with calorimetry inside

Touching a solid supplies mechanism for decay

Some fraction of energy appears in surface
-energy transferred through electron exchange (not phonons)

-fraction dependent on material’s electron density of states ballistic
molecule
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Excitations in superfluid “He

eV-scale excitations:

Excimers (He2>*)

singlet: ~ns halflife (observable as scintillation) v/ detection: easy
triplet:  13s halflife (observable as ballistic molecules) ¢/ detection: easy

(+ a little IR from excitations to higher atomic states)

meV-scale excitations:

phonons, R- rotons, R+ rotons
(observable as athermal evaporation)



“*He Quasiparticles

Things to know:

meV-scale  (hear ‘MeV-scale DM’...)

Not on a crystal lattice (isotropic dispersion)

Ballistic propagation

Most downconversions forbidden

Multiple ‘flavors’ with distinguishing characteristics:
- slope is velocity

- R- propagation opposite to momentum

Below atomic excitation energy, all recoil energy
appears in these kinetic modes

energy [meV]
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R+

1 2 3
momentum [keV/c]

Emaxon
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*He Quasiparticles

Don’t let the word ‘roton’ distract you.

lllustration is incorrect in two ways:
-rotons are few-atom-scale kinetic excitations
-rotons do not carry angular momentum.

sufficient shorthand:
rotons are “high-momentum phonons”

ejlel

EVIL ASSAULT VEHICLE!
(1984)




Reading Out “He Quasiparticles

crossing into solid extremely suppressed

(Kapitza resistance)

Solid: Transmission (20x)
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Reading Out “He Quasiparticles (quantum evaporation)

crossing into solid extremely suppressed

(Kapitza resistance) a atom

...saved by significant probability

of quantum evaporation at vacuum )
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Reading Out “He Quasiparticles (quantum evaporation)

crossing into solid extremely suppressed
(Kapitza resistance) 5 atom
...saved by significant probability YRR interface
of quantum evaporation at vacuum 5 )
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Reading Out “He Quasiparticles (quantum evaporation)

quasiparticle

free atom

van der Waals
binding

LHe

vacuum

10s of meV

— van der Waals gain

Typical helium-solid binding energy: ~10meV

Higher binding energies exist (graphene-fluorine: 42.9meV)

most recoil energy is in roton modes (DOS ~ p?)
each 1 meV roton energy becomes ~40 meV observation

—» x40 gain



‘Shovel Ready’ Technology Years Ago

R&D for the proposed HERON pp neutrino observatory
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Energy Fraction

Energy Fraction

ER/NR discrimination using excimer production

Toy MC

Production Statistics
Assumed Poissonian
(biggest first, remaineder in QP)

Nuclear Recoil

Detection Efficiencies

singlet UV photons : 0.95 (4pi coverage by calorimetry)
triplet excimers : 5/6
IR photons : 0.95
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Simulated Backgrounds

backgrounds included:

-neutrino nuclear coherent scattering

-gamma backgrounds copy

SuperCDMS & DAMIC projections
https://arxiv.org/abs/1610.00006

-note: LHe is naturally itself radiopure

two details:

-excimers allow ER discrimination (>20eV)

-newly-discussed gamma-NR background
Robinson Phys. Rev. D 95,021301 (2017)

arguments for low dark count rate:

-calorimetry, no applied potential energies
-low-mass calorimeter: low-energy clamps

-superfluid target: highly isolated from environment

dR/dE, (DRU)

10° 1scattering

gamma neutrino elecf[’ftrop
nuclear nuclear scattering

scattering
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Nuclear Recoil Sensitivity
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Nuclear Recoil Sensitivity

rarely-considered but newly-relevant:
earth shielding at large cross-sections
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two-body diagram

the nuclear mass (dispersion relation)

IS very different from

the DM mass (dispersion relation)

nucleus

nucleus

this talk has so far been “we have a mismatch, but we
have strategies to mitigate that mismatch.”

~10x energy boost from light nucleus
~10x energy boost from van der Waals gain

)

1eV w/ binding gain
100meV He endpoin

Elastic Recoil Endpoint [eV]

5meV Ge endpoint
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three-body option #1: nuclear bremsstrahlung

Kouvaris, Pradler: arXiv:1607.01789
McCabe: arXiv:1702.04730v1

nucleus

trick:
outgoing [ nucleus+y | can have
wide range of [E,p]

no longer limited to nuclear
dispersion relation

what you get:
recoil E can be up to DM KE

(and Ey can be up to recoil E)

what you pay:
large phase space suppression



three-body option #2: multiple outgoing phonons
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virtual <
phonon

Schutz, Zurek: arXiv:1604.08206
Knappen, Lin, Zurek arXiv:1611.06228

outgoing
real phonons

trick:
outgoing multi-phonon states
can have wide range of [E,p]

no longer limited to phonon
dispersion relation

what you get:
recoll E can be up to DM KE

what you pay:
large phase space suppression



three-body option #2: multiple outgoing phonons

as observed In

1.5 neutron scattering data
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Nuclear Recoil Sensitivity

result of double-roton diagram:

bypass the He atom dispersion relation

sensitivity to keV-scale masses
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starting up some new efforts

McKinsey Group at Berkeley Hertel Group at U. Mass. (no table yet)

4dHe scintillation yie|d at low energies designing, setting up 4He evaporation channel test bed

goals: evaporation channel R&D
evaporation channel calibration (bring to n facility)
early DM limits from on-campus lab (“v-cleus style”)

LHe

PMT

wavelength
shifter




Summary

Ideal technology for low-mass NR
-meV-scale long-lived kinetic excitations
-light-element material
-suppressed “dark counts” in superfluid

Shovel-ready technology
-4He evaporation: HERON
-calorimeters: CDMS, CRESST, etc.

Small and cheap, $1M-scale
- small target (grams-to-kg)
- few channels (6+)
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