Caltech

Physics Beyond the Standard Model with Polar Molecules

Nick Hutzler *Caltech*

High precision

- Techniques to probe atoms and molecules enable extreme precision and control
 - Cooling/trapping
 - Long interaction times
 - Controlled environment

High precision...

High precision... high energy

High precision... high energy

Supersymmetry, axions, Lorentz violation, new forces, ...

(Jestimore Content of the second seco

I. Introduction

II. Motivation

- III. Experiments
- IV. Implications
- V. Future Work

- The universe is made of matter
 - Which processes favor matter over anti-matter?
 - How can we study this?

- The universe is made of matter
 - Which processes favor matter over anti-matter?
 - How can we study this?
- One requirement: CP violation
 - C: $+q \leftrightarrow -q$
 - P: $+\vec{r} \leftrightarrow -\vec{r}$

- The universe is made of matter
 - Which processes favor matter over anti-matter?
 - How can we study this?
- One requirement: CP violation
 - C: $+q \leftrightarrow -q$
 - P: $+\vec{r} \leftrightarrow -\vec{r}$

- The universe is made of matter
 - Which processes favor matter over anti-matter?
 - How can we study this?
- One requirement: CP violation
 - C: $+q \leftrightarrow -q$
 - P: $+\vec{r} \leftrightarrow -\vec{r}$

CP Violation

- CP violation exists in the Standard Model
 - Weak-quark interactions, mesons
 - Not enough!
- New particles, forces can violate CP

CP Violation

- CP violation exists in the Standard Model
 - Weak-quark interactions, mesons
 - Not enough!
- New particles, forces can violate CP
- Generates permanent electric dipole moments (EDMs)

EDMs violate symmetries

EDMs violate symmetries

EDMs violate symmetries

EDMs violate P, T, CP*

(*Assuming conservation of CPT...)

New Lab @ Caltech

Caltech, Downs/Lauritsen building, first floor

- Sensitive, background-free probe for new physics
- SM value is small
 - |d_e| < 10⁻³⁸ e cm

- Sensitive, background-free probe for new physics
- SM value is small
 - |d_e| < 10⁻³⁸ e cm
- Previous limits:
 - 1.6 x 10⁻²⁷ e cm (Tl, 2002)
 - 1.05 x 10⁻²⁷ e cm (YbF, 2011)

- Sensitive, background-free probe for new physics
- SM value is small
 - |d_e| < 10⁻³⁸ e cm
- Previous limits:
 - 1.6 x 10⁻²⁷ e cm (Tl, 2002)
 - 1.05 x 10⁻²⁷ e cm (YbF, 2011)
- New physics generally leads to large values

- Sensitive, background-free probe for new physics
- SM value is small
 - |d_e| < 10⁻³⁸ e cm
- Previous limits:
 - 1.6 x 10⁻²⁷ e cm (Tl, 2002)
 - 1.05 x 10⁻²⁷ e cm (YbF, 2011)
- New physics generally leads to large values

21

How to measure?

Sensitivity

- Measure $\Delta \phi \propto dE\tau$
 - Want large E, large τ

Sensitivity

- Measure $\Delta\phi \propto dE\tau$
 - Want large E, large τ
- Shot-noise limited uncertainty

- Atoms/molecules have huge fields!
 - $e/4\pi\epsilon_0 a_0^2 \sim \text{GV/cm}$
 - Relativistic ~ Z³ enhancement

- Atoms/molecules have huge fields!
 - $e/4\pi\epsilon_0 a_0^2 \sim \text{GV/cm}$
 - Relativistic ~ Z³ enhancement

 $\langle \vec{d_e} \cdot \vec{\mathcal{E}} \rangle = 0$

- Atoms/molecules have huge fields!
 - $e/4\pi\epsilon_0 a_0^2 \sim \text{GV/cm}$
 - Relativistic ~ Z³ enhancement
- Use external field to align internal field
- Permanent EDM causes splitting
 - splitting • $H = -\vec{d_e} \cdot \vec{\mathcal{E}}_{eff}$

 $\langle \vec{d_e} \cdot \vec{\mathcal{E}} \rangle \neq 0$

- Atoms/molecules have huge fields!
 - $e/4\pi\epsilon_0 a_0^2 \sim \text{GV/cm}$
 - Relativistic ~ Z³ enhancement
- Use external field to align internal field
- Permanent EDM causes splitting
 - splitting • $H = -\vec{d_e} \cdot \vec{\mathcal{E}}_{eff}$

- Atoms/molecules have huge fields!
 - $e/4\pi\epsilon_0 a_0^2 \sim \text{GV/cm}$
 - Relativistic ~ Z³ enhancement
- Use external field to align internal field
- Permanent EDM causes splitting
 - $H = -\vec{d}_e \cdot \vec{\mathcal{E}}_{eff}$
- Must be polarized!
 - Atoms ~ 10⁻³
 - Molecules ~ 1

ACME Molecule: ThO

- Metastable, EDMsensitive electronic state
 - τ ≈ 2 ms
 - E_{eff} = 78 GV/cm
 - Completely polarize with 10 V/cm
 - Internal co-magnetometer

ACME Molecule: ThO

- Metastable, EDMsensitive electronic state
 - τ ≈ 2 ms
 - E_{eff} = 78 GV/cm
 - Completely polarize with 10 V/cm
 - Internal co-magnetometer

ACME Molecule: ThO

- Metastable, EDMsensitive electronic state
 - τ ≈ 2 ms
 - E_{eff} = 78 GV/cm
 - Completely polarize with 10 V/cm
 - Internal co-magnetometer
- Refractory, reactive
 - T_{melt} ~ 3,400 °C
 - Create with cryogenic buffer gas beam (CBGB)

Apparatus Overview

Apparatus Overview

Apparatus Overview

Buffer Gas Cell

- All terms in the Hamiltonian (phases) have distinct behavior under reversal of:
 - N Molecule dipole orientation
 - E External electric field
 - B External magnetic field

- All terms in the Hamiltonian (phases) have distinct behavior under reversal of:
 - N Molecule dipole orientation
 - E External electric field
 - B External magnetic field

Quantity	N-flip	E-flip	B-flip
Electron EDM	-	-	+
Applied B field	+	+	-

- All terms in the Hamiltonian (phases) have distinct behavior under reversal of:
 - N Molecule dipole orientation
 - E External electric field
 - B External magnetic field
- Look for correlations between experiment states

Quantity	N-flip	E-flip	B-flip
Electron EDM	-	-	+
Applied B field	+	+	-
Background B field	+	+	+
Leakage current/v x E/Geometric phases	+	-	+
etc			

- All terms in the Hamiltonian (phases) have distinct behavior under reversal of:
 - N Molecule dipole orientation
 - E External electric field
 - B External magnetic field
- Look for correlations between experiment states

Quantity	N-flip	E-flip	B-flip				
Electron EDM	-	-	+				
Applied B field	+	+	-				
Background B field	+	+	+				
Leakage current/v x E/Geometric phases	+	-	+				
etc							
Common source of experimental problems							

Electron EDM Limit

- Current best limit on the electron EDM
 - |d_e| < 9.6 x 10⁻²⁹ e cm
 - ~11x improvement over previous limit

Electron EDM Limit

- Current best limit on the electron EDM
 - |d_e| < 9.6 x 10⁻²⁹ e cm
 - ~11x improvement over previous limit
- Current status: working on generation II
 - Count rate up by ~500
 - Integrating and checking for systematics – stay tuned!

ACME Collaboration (Gen I)

- Harvard University
 - Jacob Baron [→ Harvard]
 - Wes Campbell [→ UCLA]
 - Yulia Gurevich [→ Heidelberg]
 - Paul Hess [→ Middlebury]
 - NH [→ Caltech]
 - Cris Panda
 - Max Parsons [→ Oculus]
 - Elizabeth Petrik-West [→ UCLA]
 - Ben Spaun [→ Honeywell]
 - Prof. John Doyle
 - Prof. Gerald Gabrielse

- Yale University
 - Emil Kirilov [→ Innsbruck]
 - Ivan Kozyryev [→ Harvard]
 - Brendon O'Leary [→ SeatGeek]
 - Adam West [→ UCLA]
 - Amar Vutha [→ Toronto]
 - Prof. David DeMille
- Funding
 - NSF
 - NIST Precision Measurement Grant

Q

What does this mean?

J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013)

What does this mean?

Probing ~few TeV energy scales for *generic* CPV particles

J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013)

What does this mean?

J. L. Feng, Annu. Rev. Nucl. Part. Sci. **63**, 351 (2013) J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. **71**, 21 (2013)

What does this mean?

J. L. Feng, Annu. Rev. Nucl. Part. Sci. **63**, 351 (2013) J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. **71**, 21 (2013)

۲

Many ingredients...

J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63, 351 (2013)

How do we get to the PeV?

J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63, 351 (2013)

How do we get to the PeV?

How do look for other physics?

J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63, 351 (2013)

Symmetry violation in Molecules

- Molecules have enhanced sensitivity to many BSM sources
 - Electron EDM
 - Nuclear Schiff moment
 - Nuclear magnetic quadrdupole moment (MQM)
 - PV/anapole moments
 - ... and more!
- Let's apply our methods to new sources

Magnetic quadrupole moment (MQM)

MQMs violate P, T, CP*

(*Assuming conservation of CPT...)

Physical Origin

- Arises from physics inside the nucleus
 - Nucleon EDM
 - quark EDM/chromo-EDM
 - CPV nuclear forces
 - Strong CPV (θ_{QCD})
 - ...
- Orthogonal to eEDM

A rotating EDM produces an MQM

58

Nuclear Deformation

- Quadrupole deformation enhances MQM
 - Collective enhancement
 - $\approx \beta_2 Z$
- Net MQM most sensitive to CPV nuclear forces

 $R(\theta)/R_0 = 1 + \beta_2 Y_2^0(\theta) + \cdots$

			$ W_M $	$ W_M MS $ (µHz)			
Molecule	I_t	State	$\frac{10^{33} \text{ Hz}}{e \cdot cm^2}$	$\frac{10^{25}d_p}{e\cdot\mathrm{cm}}$	$10^{10} ilde{ heta}$	$\frac{10^{27}(\tilde{d}_u - \tilde{d}_d)}{\mathrm{cm}}/$	
^{135,137} BaF	$\frac{3}{2}$	$^{2}\Sigma_{1/2}$	0.83 ^a	~0.1	1	0.6	
¹⁷³ YbF	$\frac{5}{2}$	$^{2}\Sigma_{1/2}$	2.1 ^b	22	42	25	
²⁰¹ HgF	$\frac{3}{2}$	$^{2}\Sigma_{1/2}$	4.8 ^a	~1	10	6	
$^{177}\mathrm{HfF}^+$	$\frac{7}{2}$	$^{3}\Delta_{1}$	0.5	20	33	20	
$^{179}\mathrm{HfF}^+$	$\frac{9}{2}$	$^{3}\Delta_{1}$	0.5	14	26	16	
¹⁸¹ TaN	$\frac{7}{2}$	$^{3}\Delta_{1}$	~1	30	50	30	
²²⁹ ThO	$\frac{5}{2}$	$^{3}\Delta_{1}$	1.9	~10	72	44	
²²⁹ ThF ⁺	$\frac{5}{2}$	$^{3}\Delta_{1}$	1.7	~10	65	39	

			$ W_M $	$ W_M MS $ (μ Hz)		
Molecule	I_t	State	$\frac{10^{33} \text{ Hz}}{e \cdot cm^2}$	$\frac{10^{25}d_p}{e\cdot\mathrm{cm}}$	$10^{10} ilde{ heta}$	$\frac{10^{27}(\tilde{d}_u - \tilde{d}_d)}{\mathrm{cm}}/$
^{135,137} BaF	$\frac{3}{2}$	$^{2}\Sigma_{1/2}$	0.83 ^a	~0.1	1	0.6
¹⁷³ YbF	$\frac{5}{2}$	$^{2}\Sigma_{1/2}$	2.1 ^b	22	42	25
¹⁸¹ TaN	$\frac{7}{2}$	$^{3}\Delta_{1}$	~1	30	50	30

- Neutral
- Large β₂
- Obtainable

			$ W_M $	$ W_M MS $ (μ Hz)			
Molecule	I_t	State	$\frac{10^{33} \text{ Hz}}{e \cdot cm^2}$	$\frac{10^{25}d_p}{e\cdot\mathrm{cm}}$	$10^{10} ilde{ heta}$	$\frac{10^{27}(\tilde{d}_u - \tilde{d}_d)}{\mathrm{cm}}/$	
^{135,137} BaF	$\frac{3}{2}$	$2\Sigma_{1/2}$	0.83 ^a	~0.1	1	0.6	
¹⁷³ YbF	$\frac{5}{2}$	$^{2}\Sigma_{1/2}$	2.1^{b}	22	42	25	
¹⁸¹ TaN	$\frac{7}{2}$	$^{3}\Delta_{1}$	~1	30	50	30	
229 Thully	oola	rize, ir	iternal co-	magneto	meter		

- Neutral
- Large β₂
- Obtainable

			$ W_M $	$ W_M MS $ (μ Hz)			
Molecule	I_t	State	$\frac{10^{33} \text{ Hz}}{e \cdot c \text{m}^2}$	$\frac{10^{25}d_p}{e\cdot\mathrm{cm}}$	$10^{10} ilde{ heta}$	$\frac{10^{27}(\tilde{d}_u - \tilde{d}_d)}{\mathrm{cm}}/$	
^{135,137} BaF	$\frac{3}{2}$	$2\Sigma_{1/2}$	0.83 ^a	~0.1	1	0.6	
¹⁷³ YbF	$\frac{5}{2}$	$^{2}\Sigma_{1/2}$	2.1 ^b	22	42	25	
²⁰¹ Hgaser	cộc	ol/trap					
¹⁸¹ TaN	$\frac{7}{2}$	$^{3}\Delta_{1}$	~1	30	50	30	
229 Thully	oola	iriz <mark>e,</mark> in	ternal co-	magneto	meter		

- Neutral
- Large β₂
- Obtainable

			$ W_M $	$ W_M MS $ (μ Hz)			
Molecule	I_t	State	$\frac{10^{33} \text{ Hz}}{e \cdot c \text{m}^2}$	$\frac{10^{25}d_p}{e\cdot\mathrm{cm}}$	$10^{10} ilde{ heta}$	$\frac{10^{27}(\tilde{d}_u - \tilde{d}_d)}{\mathrm{cm}}/$	
^{135,137} BaF	$\frac{3}{2}$	$2\Sigma_{1/2}$	0.83 ^a	~0.1	1	0.6	
¹⁷³ YbF	$\frac{5}{2}$	$^{2}\Sigma_{1/2}$	2.1 ^b	22	42	25	
²⁰¹ Hgaser	cộc	ol/trap					
¹⁸¹ TaN	$\frac{7}{2}$	$^{3}\Delta_{1}$	~1	30	50	30	
229 Thully	sola	iriz <mark>e,</mark> in	ternal co-	magneto	meter		

- Neutral
- Large β₂
- Obtainable
- Can we have it all?

			$ W_M $	$ W_M MS $ (µHz)			
Molecule	I_t	State	$\frac{10^{33} \text{ Hz}}{e \cdot cm^2}$	$\frac{10^{25}d_p}{e\cdot\mathrm{cm}}$	$10^{10} ilde{ heta}$	$\frac{10^{27}(\tilde{d}_u - \tilde{d}_d)}{\mathrm{cm}}/$	
^{135,137} BaF	$\frac{3}{2}$	$^{2}\Sigma_{1/2}$	0.83 ^a	~0.1	1	0.6	
¹⁷³ YbF	<u>5</u>	$^{2}\Sigma_{1/2}$	2.1^{b}	22	42	25	
Laser	coc	ol/trap	>???				
$^{177}\mathrm{HfF}^+$	$\frac{7}{2}$	${}^{3}\Delta_{1}$	0.5				
¹⁸¹ TaN	$\frac{7}{2}$	$^{3}\Delta_{1}$	~1	30	50	30	
229 Thully	oola	iriz <mark>e,</mark> in	iternal co-	magneto	meter		

- Neutral
- Large β₂
- Obtainable
- Can we have it all?

Where can we improve?

Shot noise limited EDM sensitivity

$$\delta d_{\rm e} = \frac{\hbar}{2\mathcal{E}_{\rm eff}\tau\sqrt{N}}$$

Where can we improve?

Shot noise limited EDM sensitivity

$$\delta d_{\rm e} = \frac{\hbar}{2\mathcal{E}_{\rm eff}\tau\sqrt{N}}$$

Where can we improve?

Shot noise limited EDM sensitivity

$$\delta d_{
m e} = rac{\hbar}{2 \mathcal{E}_{
m eff} au \sqrt{N}}$$

Traps can have *τ* **> 1 s...**

Where are we going...

- 10⁶ molecules
- 10 s coherence
- Large enhancement(s)
- I day averaging

Figure adapted from A. J. Daley, Nature **501**, 497 (2013)

۲

How do we get there?

- Laser cooling!
 - Only *demonstrated* technology
 - Only recently applied to molecules (difficult!)
 - Full polarization, comagnetometers *destroy* laser cooling (d shells)

()

Incompatible features

Feature	ThO, TaN	WC	(Hf,Th)F ⁺	(Yb,Ba,Ra)F	Hg/Ra	?????????
Laser cooling	×	×	×	\checkmark	\checkmark	✓
Full polarization	\checkmark	\checkmark	\checkmark	×	××	\checkmark
Internal co-mag.	\checkmark	\checkmark	\checkmark	×	×	\checkmark
>1 s lifetime	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Scalable (Large #)	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
Polarization provides a "handle" to orient the molecule

 Polarization provides a "handle" to orient the molecule

Polarization New physics/ Laser cooling

- Polarization provides a "handle" to orient the molecule
- In polyatomics, these features can be decoupled
 - Get laser cooling, full polarization, comagnetometers, etc.

Polarization New physics/ Laser cooling

- Polarization provides a "handle" to orient the molecule
- In polyatomics, these features can be decoupled
 - Get laser cooling, full polarization, comagnetometers, etc.
- Realistic pathway to PeVscale physics!

Polarization New physics/ Laser cooling

Pathway to PeV Physics

Feature	ThO, TaN	WC	(Hf,Th)F+	(Yb,Ba,Ra)F	Hg/Ra	Polyatomics
Laser cooling	×	×	×	\checkmark	\checkmark	\checkmark
Full polarization	\checkmark	\checkmark	\checkmark	×	××	\checkmark
Internal co-mag.	\checkmark	\checkmark	\checkmark	×	×	\checkmark
>1 s lifetime	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Scalable (Large #)	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark

New Lab

- Precision measurements in neutral polar molecules
 - NMQM search to look for BSM hadronic physics
 - Polyatomics to extend AMO BSM searches into the PeV regimes
- www.hutzlerlab.com
- Please come visit!

Ŷ

Thanks for your attention!

Let's stay in touch – hutzler@caltech.edu