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High precision
 Techniques to probe 

atoms and molecules 
enable extreme precision 
and control
 Cooling/trapping
 Long interaction times
 Controlled environment
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High precision…

B. J. Bloom et al., Nature 506, 71 (2014)
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High precision… high energy
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High precision… high energy

B. J. Bloom et al., Nature 506, 71 (2014)

New physics?
Supersymmetry, axions, Lorentz violation, new forces, …
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I. Introduction
II. Motivation
III. Experiments
IV. Implications
V. Future Work
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Baryon Asymmetry
 The universe is made of 

matter
 Which processes favor matter 

over anti-matter?
 How can we study this?
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Baryon Asymmetry
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CP Violation
CP violation exists in the 

Standard Model
 Weak-quark interactions, 

mesons
 Not enough!

New particles, forces can 
violate CP

𝜒

CP violating
interaction
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CP Violation
CP violation exists in the 

Standard Model
 Weak-quark interactions, 

mesons
 Not enough!

New particles, forces can 
violate CP
Generates permanent 

electric dipole moments 
(EDMs)

𝜒

CP violating
interaction
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EDMs violate symmetries
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EDMs violate symmetries
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EDMs violate symmetries

EDMs violate P, T, CP*


(*Assuming conservation of CPT…) 15



New Lab @ Caltech

Caltech, Downs/Lauritsen building, first floor
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Electron EDM
 Sensitive, background-free 

probe for new physics
 SM value is small

 |de| < 10-38 e cm
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How to measure?
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H =  dE  B
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How to measure?

 = 0
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Time 

 dE

EB

H =  dE  B
+ = B + dE

- = B  dE

Spin precession!
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Sensitivity
Measure  dE

 Want large E, large 
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Sensitivity
Measure  dE

 Want large E, large 
 Shot-noise limited uncertainty

Effective electric field

Coherence time

Total counts

28



Electric field?
Atoms/molecules have 

huge fields!
 GV/cm
 Relativistic Z3 enhancement
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Electric field?
Atoms/molecules have 

huge fields!
 GV/cm
 Relativistic Z3 enhancement

Use external field to align 
internal field
 Permanent EDM causes 

splitting


Must be polarized!
 Atoms ~ 10-3

 Molecules ~ 1 |↓ |↑
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ACME Molecule: ThO
Metastable, EDM-

sensitive electronic state
   2 ms
 Eeff = 78 GV/cm
 Completely polarize with 

10 V/cm
 Internal co-magnetometer 
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ACME Molecule: ThO
Metastable, EDM-

sensitive electronic state
   2 ms
 Eeff = 78 GV/cm
 Completely polarize with 

10 V/cm
 Internal co-magnetometer

 Refractory, reactive
 Tmelt ~ 3,400 oC
 Create with cryogenic 

buffer gas beam (CBGB)



 



36N. R. Hutzler, H.-I. Lu, and J. M. Doyle, Chem. Rev. 112, 4803 (2012)



Apparatus Overview

CBGB
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Apparatus Overview

CBGB
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The Apparatus
Spin Precession Region

Pulsed Beam Source

Buffer Gas Cell

Fluorescence Collection

40



The Apparatus
Spin Precession Region

Pulsed Beam Source

Buffer Gas Cell

Fluorescence Collection
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Isolating the EDM – “Switches”
 All terms in the Hamiltonian (phases) have distinct behavior 

under reversal of:
 N - Molecule dipole orientation 
 E - External electric field
 B - External magnetic field



 


N
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Isolating the EDM – “Switches”
 All terms in the Hamiltonian (phases) have distinct behavior 

under reversal of:
 N - Molecule dipole orientation 
 E - External electric field
 B - External magnetic field

 Look for correlations between experiment states

Quantity N-flip E-flip B-flip

Electron EDM – – +

Applied B field + + –

Background B field + + +

Leakage current/v x E/Geometric phases + – +

etc…

Common source of experimental problems
Only available with co-magnetometer
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Electron EDM Limit
 Current best limit on the 

electron EDM
 |de| < 9.6 x 10-29 e cm
 ~11x improvement over 

previous limit

ACME Collaboration: Baron et al., Science 343, 269 (2014)                    www.electronedm.info 46



Electron EDM Limit
 Current best limit on the 

electron EDM
 |de| < 9.6 x 10-29 e cm
 ~11x improvement over 

previous limit

Current status: working 
on generation II
 Count rate up by ~500
 Integrating and checking 

for systematics – stay 
tuned!

ACME Collaboration: Baron et al., Science 343, 269 (2014)                    www.electronedm.info 47
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Many ingredients…

J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63,  351 (2013)

ACME
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J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63,  351 (2013)

ACME

How do we get to the PeV?
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J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63,  351 (2013)

ACME

How do we get to the PeV?

How do look for other physics?
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Symmetry violation in Molecules
Molecules have 

enhanced sensitivity to 
many BSM sources
 Electron EDM
 Nuclear Schiff moment
 Nuclear magnetic 

quadrdupole moment 
(MQM)

 PV/anapole moments
 … and more!

 Let’s apply our methods 
to new sources
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Magnetic quadrupole moment (MQM)

MQMs violate P, T, CP*

(*Assuming conservation of CPT…)
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Physical Origin
Arises from physics inside

the nucleus
 Nucleon EDM
 quark EDM/chromo-EDM
 CPV nuclear forces
 Strong CPV (θQCD)
 …

Orthogonal to eEDM

58

A rotating EDM
produces an MQM



Nuclear Deformation
Quadrupole deformation 

enhances MQM
 Collective enhancement 
 ≈ β2Z

Net MQM most sensitive 
to CPV nuclear forces

β2 = 0

β2  = 0.3

V. V. Flambaum et al., Phys. Rev. Lett. 113, 103003 (2014)         Flambaum, V. V., Phys. Lett. B 320, 211–215 (1994) 59



Which species?
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Which species?
Neutral
 Large β2

Obtainable

Can we have 
it all?

Laser cool/trap

Fully polarize, internal co-magnetometer
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Where can we improve?
 Shot noise limited EDM sensitivity
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Where can we improve?
 Shot noise limited EDM sensitivity

Beams have  ~ 1 ms
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Where can we improve?
 Shot noise limited EDM sensitivity

Beams have  ~ 1 ms

Traps can have  > 1 s…
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Where are we going…
 106 molecules
 10 s coherence
 Large enhancement(s)
 1 day averaging

Figure adapted from A. J. Daley, Nature 501, 497 (2013)

Heavy, polar molecule
sensitive to new physics
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Where are we going…
 106 molecules
 10 s coherence
 Large enhancement(s)
 1 day averaging

Mnew phys ~ 1,000 TeV

Figure adapted from A. J. Daley, Nature 501, 497 (2013)

Heavy, polar molecule
sensitive to new physics
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How do we get there?
 Laser cooling!

 Only demonstrated
technology 

 Only recently applied to 
molecules (difficult!)

 Full polarization, co-
magnetometers destroy
laser cooling (d shells)

Yb Atoms
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Incompatible features

Feature ThO, TaN WC (Hf,Th)F+ (Yb,Ba,Ra)F Hg/Ra ?????????
Laser cooling      

Full polarization       

Internal co-mag.      

>1 s lifetime      

Scalable (Large #)      
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Decoupling features
 Polarization provides a 

“handle” to orient the 
molecule

I. Kozyryev and NRH, arXiv:1705.11020 (2017), to appear in PRL
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Decoupling features
 Polarization provides a 

“handle” to orient the 
molecule
 In polyatomics, these 

features can be 
decoupled
 Get laser cooling, full 

polarization, co-
magnetometers, etc.
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Decoupling features
 Polarization provides a 

“handle” to orient the 
molecule
 In polyatomics, these 

features can be 
decoupled
 Get laser cooling, full 

polarization, co-
magnetometers, etc.

 Realistic pathway to PeV-
scale physics!

I. Kozyryev and NRH, arXiv:1705.11020 (2017), to appear in PRL
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Pathway to PeV Physics

Feature ThO, TaN WC (Hf,Th)F+ (Yb,Ba,Ra)F Hg/Ra Polyatomics
Laser cooling      

Full polarization       

Internal co-mag.      

>1 s lifetime      

Scalable (Large #)      
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New Lab
 Precision measurements 

in neutral polar 
molecules
 NMQM search to look for 

BSM hadronic physics
 Polyatomics to extend 

AMO BSM searches into 
the PeV regimes

www.hutzlerlab.com
 Please come visit!
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Thanks for your attention!

Let’s stay in touch – hutzler@caltech.edu
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