OLIVIA:

TPC-based ⁸Li beta decay measurement

Axel Schmidt

MIT

August 10, 2017

 β -decay has led to the discovery of two particles.

Continuous energy spectrum \rightarrow neutrino

UV divergence of 4-point vertex \longrightarrow weak boson

Typical β -decay measurements use atom traps.

Typical β -decay measurements use atom traps.

⁸Be breaks apart into two α -particles.

OLIVIA: a TPC for nuclear recoils.

The important points

1 BSM searches with β -decay

• ⁸Li β -decay is fertile ground for finding hints of BSM physics.

- 2 The OLIVIA Experiment
 - A TPC experiment has advantages over tranditional atom-traps.

β -decay need not have V - A structure.

$$\begin{split} H_{\text{eff.}} &= \left(\bar{\psi}_{p}\psi_{n}\right)\left(C_{S}\bar{\psi}_{e}\psi_{\nu} + C_{S}'\bar{\psi}\gamma_{5}\psi_{e}\right) \\ &+ \left(\bar{\psi}_{p}\gamma_{\mu}\psi_{n}\right)\left(C_{V}\bar{\psi}_{e}\gamma^{\mu}\psi_{\nu} + C_{V}'\bar{\psi}\gamma^{\mu}\gamma_{5}\psi_{e}\right) \\ &+ \frac{1}{2}\left(\bar{\psi}_{p}\sigma_{\lambda\mu}\psi_{n}\right)\left(C_{T}\bar{\psi}_{e}\sigma^{\lambda\mu}\psi_{\nu} + C_{T}'\bar{\psi}\sigma^{\lambda\mu}\gamma_{5}\psi_{e}\right) \\ &- \left(\bar{\psi}_{p}\gamma_{\mu}\gamma_{5}\psi_{n}\right)\left(C_{A}\bar{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu} + C_{A}'\bar{\psi}\gamma^{\mu}\psi_{e}\right) \\ &+ \left(\bar{\psi}_{p}\gamma_{5}\psi_{n}\right)\left(C_{P}\bar{\psi}_{e}\gamma_{5}\psi_{\nu} + C_{P}'\bar{\psi}\psi_{e}\right) \\ &+ \text{h.c.} \end{split}$$

The decay rate has several correlation terms.

Γ

$$\begin{aligned} - \propto 1 + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} \\ &- c \left[\frac{\vec{p}_e \cdot \vec{p}_\nu}{3E_e E_\nu} - \frac{(\vec{p}_e \cdot \vec{j})(\vec{p}_\nu \cdot \vec{j})}{E_e E_\nu} \right] \left[\frac{J(J+1) - 3\langle (\vec{J} \cdot \vec{j})^2 \rangle}{J(2J-1)} \right] \\ &+ \frac{\langle \vec{J} \rangle}{J} \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + D \frac{\vec{p}_e \times \vec{p}_\nu}{E_e E_\nu} \right] \end{aligned}$$

$$a \propto |M_F|^2 \left(|C_V|^2 - |C_S|^2 + |C_V'|^2 - |C_S'|^2 \right)$$

$$\frac{1}{3} |M_{GT}|^2 \left(|C_T|^2 - |C_A|^2 + |C_T'|^2 - |C_A'|^2 \right)$$

Decays can be "Fermi" or "Gamow-Teller."

Fermi Decay $(S_{e\nu} = 0)$ Gamow-Teller Decay $(S_{e\nu} = 1)$

 $\Delta J = 0$ $\Delta T = 0$

• $\Delta J = \pm 1, 0$ • $0^+ \rightarrow 0^+$ forbidden

Scalar/tensor currents may come from BSM particles.

- Lepto-quarks
- Right-handed bosons

Only C_V and C_A are macroscopic.

PRC 77. 035502 (2008)

Properties of ⁸Li decay

Previous ⁸Li measurement was performed using atom traps.

Argonne ⁸Li experiment:

PRL 110, 092502 (2013), PRL 115, 182501 (2015)

Previous ⁸Li measurement was performed using atom traps.

$$|\frac{C_T}{C_A}|^2 = .0013 \pm .0038_{stat} \pm .0043_{sys}$$

Figure from PRL 115, 182501 (2015)

Previous ⁸Li measurement was performed using atom traps.

Figure from PRL 115, 182501 (2015)

 $|\frac{C_T}{C_A}|^2 = .0013 \pm .0038_{stat} \pm .0043_{sys}$ Pros:

- Well-localized vertex
- Isotope selectivity

Cons:

- Low statistics
- Limited coverage
- Detector systematics

No precision measurements performed without traps!

The important points

1 BSM searches with β -decay

• ⁸Li β -decay is fertile ground for finding hints of BSM physics.

2 The OLIVIA Experiment

• A TPC experiment has advantages over tranditional atom-traps.

Optical LIthium V-mInus-A

- Gas-filled TPC for ≈MeV recoils
- Scintillation at amplification plane
- Events read out by CCD camera

19

OLIVIA is a TPC-based ⁸Li β -decay experiment.

Optical Llthium V-mlnus-A

- Gas-filled TPC for ≈MeV recoils
- Scintillation at amplification plane
- Events read out by CCD camera

Simulated event

Real α -event from ¹⁴⁸Gd source

Real α -event from ¹⁴⁸Gd source

Real α -event from ¹⁴⁸Gd source

The Bragg peak tells us the track direction.

Time structure of ground mesh wave form gives us a 3-dimensional picture.

OLIVIA was originally DMTPC, a directional DM detector.

Cosmin Deaconu thesis, MIT 2015

OLIVIA was originally DMTPC, a directional DM detector.

Data Fit Energy- o Distribution)

Deaconu et al., PRD 95, 122002 (2017)

DCTPC/MITPC: a neutron background detector for neutrino experiments

1-year run at Double-Chooz, then Booster Beamline at Fermilab
 Experiment with different gas mixtures: He, Ne, + CF₄

Ne mixture

He mixture A. Hexley et al., J. Instr. 10 P11010 (2015)

OLIVIA must reconstruct the energy and angles of two back-to-back 1.5 MeV α -particles.

Tensor contributions show up in the energy difference between α 's.

Tensor contributions show up in the energy difference between α 's.

We are optimizing resolutions using α -sources.

Achieved 2.5% resolution at 5 MeV. Goal is 2% at 1.5 MeV.

We have developed algorithms that identify the decay vertex.

We have developed algorithms that identify the decay vertex.

Analysis by graduate student Efrain Segarra

We still need to figure out how to make the ⁸Li.

SNO had a ⁸Li calibration source.

SNO used a *dt*-fusion generator for ${}^{11}B(n, \alpha)^{8}Li$.

NIM A 489 (2002) 178188

Possible OLIVIA set-up

Our goal is 10^7 decays in OLIVIA in one month.

OLIVIA would have tremendous reach from increased statistics.

Incl. reasonable estimates for achievable resolutions, ⁸Li production rates

Potential upgrade of β -detectors

Add scintillator array for detecting electrons inside the TPC volume. \longrightarrow additional correlations

Summary

⁸Li has great potential for probing BSM physics

 \blacksquare Previous best measurement used an ion trap \longrightarrow limited statistics

OLIVIA

- Use existing TPC technology
- Factor 10× increase in statistics
- Full 4π detector coverage
- Follow SNO design for ⁸Li production
- Drastic improvement in reach!
- We are just getting started!

 β -decay has already led us to two new particles. OLIVIA can help us look for another!

