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Optical Atomic Clocks

• State-of-the-art accuracy at the level

• Narrow transitions with S-wave are needed:

Bloom et al., Nature 506, 71-76 (2014)

Ludlow-Boyd-Ye, Rev. Mod. Phys. 87 (2015)

experimental error 
of E3 0.25 Hz

relative error: 4×10⁻¹⁶ 
Huntenmann et al. 2014
Gouda et al. 2014
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FIG. 1: [YS: update the plot - math the curves to the
table] Limits on yeyn vs. the NP mass, m�. Constraints from
existing IS data (solid lines, experimental resolution � [Hz]
specified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
3/2 (D states)], Ba+,

Sr+, Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing
constraints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,

⌫AA0

i ⌘ ⌫A
i � ⌫A0

i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0

1

and ⌫AA0

2

. In terms of the modified IS1,
m⌫AA0

i ⌘ ⌫AA0

i /µAA0 . this relation is,

m⌫AA0

2

=K
21

+F
21

m⌫AA0

1

, (3)

with F
21

⌘ F
2

/F
1

, and K
21

⌘ K
2

� F
21

K
1

.
Equation (3) leads to a linear relation between m⌫

1

and m⌫
2

, giving rise to a straight line in the so-called
King plot of m⌫

2

vs m⌫
1

[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector

�!m⌫i ⌘
⇣
m⌫

AA0
1

i , m⌫
AA0

2
i , m⌫

AA0
3

i

⌘
. (4)

The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
����!
m�hr2i

in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
Eq. (2) becomes

�!m⌫i = Ki
�!mµ + Fi

����!
m�hr2i. (5)

1

Below we will adopt the notation of adding an m to “modi-

fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
�hr2iAA0/µAA0 .

the same electronic transition, i, in two isotopes, A and A’

King 63 
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
3/2 (D states)], Ba+, Sr+,

Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing con-
straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].
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isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
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5/2 vs S ! D
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Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing con-
straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].
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IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,
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where two terms represent MS and FS respectively [16,
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the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
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Given two electronic transitions, i = 1, 2, one can elim-
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[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
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The formulae in our treatment of new physics will be
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transition frequency between the isotope A and A0 is IS,
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IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,
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where two terms represent MS and FS respectively [16,
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A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
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(2) is a product of a purely nuclear quantity and a purely
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clear and electronic dependence. This is known as leading
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dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
3/2 (D states)], Ba+, Sr+,

Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing con-
straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,

⌫AA0

i ⌘ ⌫A
i � ⌫A0

i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0

1

and ⌫AA0

2

. In terms of the modified IS1,
m⌫AA0
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Equation (3) leads to a linear relation between m⌫
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and m⌫
2

, giving rise to a straight line in the so-called
King plot of m⌫

2

vs m⌫
1

[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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The nuclear parameters of field and mass shift, µAA0 and
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in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
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existing isotope shift measurement of Ca⁺

when comparing two different transitions and can be
eliminated in a King plot analysis [28,29] as shown in
Fig. 3 for the two transitions considered here. Each axis
shows the modified isotope shift mδνA;A

0 ¼ δνA;A
0
gA;A

0
,

where gA;A
0 ¼ ð1=mA − 1=mA0Þ−1, for one of the two

transitions. A straight line fit to the three data points
provides linear combinations of the field and mass shift
constants for the two transitions. An important result from
this fit is that there is no evidence for a deviation from a
straight line, confirming that (2) is a good parametrization
of the isotope shift even at the high experimental accuracy
of the measurements presented here.

A comparison of the high resolution results with pre-
vious experimental data based on collinear laser spectros-
copy [10,11] shows systematic deviations, which can be
used to calibrate experimental parameters of this technique.
Following Ref. [12] we performed a three-dimensional
King plot analysis to extract the fitting parameters kMS and
F for the two transitions. Two dimensions are those shown
in Fig. 3. In the third dimension we plot the modified
change in mean-square nuclear charge radius δhr2iA;A0

gA;A
0
,

using the previous values of δhr2i from [30], which are
based on muonic atom spectroscopy and electron scatter-
ing. The three-dimensional King plot constrains the mass
and field-shift constants, and under the assumption that (2)
is correct (i.e., the three data points are connected by a
straight line) can also be used to extract improved values of
δhr2i. To find the parameter estimates and their uncertain-
ties an acceptance-rejection Monte Carlo method was used
to generate samples consistent with the measured values
and associated uncertainties [31]. The measurement dis-
tributions were assumed to be independent uncorrelated
normals. The likelihoods of three randomly generated
points, constrained to be collinear, were used as the
acceptance criterion in the algorithm. The extracted param-
eters are shown in Table II.
The extracted field-shift and mass-shift constants pose a

strong challenge for many-body atomic theory (fourth
column of Table II), where the mass shift in particular
has proven very difficult to calculate even in the “easy” case
of single-valence-electron ions [32,33]. A comparison to
the experimental field and mass shift constants given in
[10,11] proves difficult since the derived uncertainties
depend strongly on the analysis technique and input
parameters for δhr2i. Evaluating the field and mass shift
constant from isotope shifts given in [10,11] using the
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FIG. 3 (color online). Two-dimensional King plot showing the
modified isotope shift of the 866 nm and 397 nm lines. Red
squares, previous experimental data from [10] and [11]; blue
circles, this Letter. The insets show the relevant ranges enlarged
by a factor of approximately 30 to illustrate the quality of the fit.

TABLE II. Parameters of three-dimensional King plot seeded with values of δhr2iA;40 taken from [30]. The units
for the field Fi and mass ki shift constants and the changes in mean square nuclear charge radii δhr2ij;40 are
MHz fm−2, GHz amu, and fm2, respectively. For comparison the second column for the previous data shows results
for the analysis using isotope shift data taken from [10] and [11] analyzed with the methods used in this Letter.

Parameter Previous This work Theory

F397 −283ð6Þa −281ð34Þ −281.8ð7.0Þ −285ð3Þa
−287b

k397 405.1(3.8)a 406.4(2.8) 408.73(40) 359b

427d

F866 79(4)c 80(13) 87.7(2.2) 88a

92b

k866 −1989.8ð4Þc −1990.9ð1.4Þ −1990.05ð13Þ −2207b
−2185d

δhr2i42;40 0.210(7) 0.210(7) 0.2160(49)
δhr2i44;40 0.290(9) 0.290(9) 0.2824(65)
δhr2i48;40 −0.005ð6Þ −0.005ð6Þ −0.0045ð60Þ
aMårtensson-Pendrill et al. [10].
bSafronova and Johnson [32].
cNörtershäuser et al. [11].
dThis work, based on the methods in [33].
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In this language leading order factorization implies the
following qualitative statement: any vector of reduced
isotope shifts, ~m⌫i must lie in the plane that is defined

by �!mµ and
����!
m�hr2i, as illustrated in the cartoon in the

left panel of Figure S1.

Note, that because the direction of
����!
m�hr2i in this space

is uncertain, theory does not tell us in which direction
this plane is oriented. However, by measuring two IS
vectors, �!m⌫

1

and �!m⌫
2

, we can test this statement by
asking whether the three vectors �!m⌫

1

, �!m⌫
2

, and �!mµ are
co-planar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!m⌫

2

= K
21

�!mµ+F
21

�!m⌫
1

. Like King lin-
earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change which direction
in the plane

�!m⌫
1

and �!m⌫
2

will point, but the qualitative
statement of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a non-linearity measure

NL =
1

2
(�!m⌫

1

⇥ �!m⌫
2

) · �!mµ . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. In our
geometrical picture it is the volume of the parallelepiped
defined by �!m⌫

1,2 and �!mµ. A given data set is considered
linear if NL is smaller than its first-order propagated er-
ror �

NL

=
p

⌃k(@NL/@Ok)2�2

k where the sum runs over
all measured observables Ok (modified frequency shifts
and isotope masses) with standard deviation �k. We note
that the above triple product is not only the area of the
non-linear triangle but also the volume of the correspond-
ing parallelepiped.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now add a new physics contribution by adding a
third term to Eq. (2)

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + ↵
NP

Xi �AA0 , (7)

where we have introduced the Xi and �AA0 to
parametrize the resulting isotope shift. These too are
factorized, namely Xi depends on the form of the new
potential and on the electronic transition, while �AA0 de-
pends only on the nuclear properties. The parameter
↵

NP

is the NP coupling constant which we would like to
probe.

Let us first mention two cases of NP which we do
not expect to be able to probe by testing King linear-
ity. For short ranged NP (shorter than the nuclear size),
the electronic parameters Xi will be similar to those of
FS, namely Xi / Fi. Also, if the new physics couples
to electrons and nuclei as their electric charge (the case

of dark-photon), the nuclear parameters will be propor-
tional to the mass shift �AA0 / µAA0 . In both of these
cases the new physics term can be absorbed, the former
by redefining �hr2iAA0 and the later by redefining Ki.
There will also be cases in which NP can accidentally be
absorbed by redefining Fi. However, a long-ranged force
with coupling not proportional to the electric charge (and
barring an accidental cancelation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes:

�!m⌫
2

=K
21

�!mµ+F
21

�!m⌫
1

+↵
NP

~h (X
2

�X
1

F
21

) , (8)

where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 . One can see that when new physics
can lead to a deviation from coplanarity if and only if (i)

The new force is not short-range, X
2

6= X
1

F
21

; (ii) ~h is
not aligned with any linear combination of �!mµ, �!m⌫

1

or�!m⌫
2

.
By solving the set of equations (7) one finds an expres-

sion for ↵
NP

that is needed to yield a particular dataset
{�!m⌫

1

, �!m⌫
2

, �!mµ}

↵
NP

=
(�!m⌫

1

⇥ �!m⌫
2

) · �!mµ .

(�!mµ ⇥ ~h) · (X
1

�!m⌫
2

� X
2

�!m⌫
1

)
, (9)

assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵

NP

. �↵NP =p
⌃k(@↵

NP

/@Ok)2�2

k. Hence, the sensitivity to probe
↵

NP

is lost in the limit where the denominator in Eq. (10)
vanishes, because the new physics contribution to non-
linerity is

NL
NP

=
↵

NP

2
(�!mµ ⇥ ~h) · (X

1

�!m⌫
2

� X
2

�!m⌫
1

) . (10)

It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵
NP

, Eq. (10), con-
tains theory input only in Xi and hAA0 which describe
how new physics a↵ects the IS. The standard model con-
tribution in the factorized limit is fully parametrized by
the observables ~⌫i and ~µ. The form of hAA0 depends on
the assumed couplings of new physics to nuclei. For ex-
ample, if the new interaction couples to quarks, then we
expect that hAA0 / AA0 [17, 38]. The atomic transi-
tion dependent factors X

1,2 can be reasonably estimated
by a many-body simulation (see the next section). This
strategy is analogous to a search for new physics, say, at
the LHC, where all SM backgrounds are estimated using
data driven methods and Monte Carlo simulation is used
only in estimating the signal cross section.

Thus far, most of experimental measurements of iso-
tope shifts (except the samarium case, see below) have
been consistent with leading-order factorization. How-
ever, nonlinearity is expected to arise, as we briefly re-
view in the following, also from the SM higher-order con-
tributions that involve nuclear physics. Since currently,
these SM nonlinearities are not understood in quantita-
tive details, if a deviation from King linearity is observed.

new physics
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) · �!mµ . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. In our
geometrical picture it is the volume of the parallelepiped
defined by �!m⌫

1,2 and �!mµ. A given data set is considered
linear if NL is smaller than its first-order propagated er-
ror �

NL

=
p

⌃k(@NL/@Ok)2�2

k where the sum runs over
all measured observables Ok (modified frequency shifts
and isotope masses) with standard deviation �k. We note
that the above triple product is not only the area of the
non-linear triangle but also the volume of the correspond-
ing parallelepiped.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now add a new physics contribution by adding a
third term to Eq. (2)

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + ↵
NP

Xi �AA0 , (7)

where we have introduced the Xi and �AA0 to
parametrize the resulting isotope shift. These too are
factorized, namely Xi depends on the form of the new
potential and on the electronic transition, while �AA0 de-
pends only on the nuclear properties. The parameter
↵

NP

is the NP coupling constant which we would like to
probe.

Let us first mention two cases of NP which we do
not expect to be able to probe by testing King linear-
ity. For short ranged NP (shorter than the nuclear size),
the electronic parameters Xi will be similar to those of
FS, namely Xi / Fi. Also, if the new physics couples
to electrons and nuclei as their electric charge (the case

of dark-photon), the nuclear parameters will be propor-
tional to the mass shift �AA0 / µAA0 . In both of these
cases the new physics term can be absorbed, the former
by redefining �hr2iAA0 and the later by redefining Ki.
There will also be cases in which NP can accidentally be
absorbed by redefining Fi. However, a long-ranged force
with coupling not proportional to the electric charge (and
barring an accidental cancelation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes:
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where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 . One can see that when new physics
can lead to a deviation from coplanarity if and only if (i)

The new force is not short-range, X
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6= X
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F
21

; (ii) ~h is
not aligned with any linear combination of �!mµ, �!m⌫
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2

.
By solving the set of equations (7) one finds an expres-

sion for ↵
NP

that is needed to yield a particular dataset
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assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵

NP

. �↵NP =p
⌃k(@↵
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/@Ok)2�2

k. Hence, the sensitivity to probe
↵

NP

is lost in the limit where the denominator in Eq. (10)
vanishes, because the new physics contribution to non-
linerity is

NL
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It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵
NP

, Eq. (10), con-
tains theory input only in Xi and hAA0 which describe
how new physics a↵ects the IS. The standard model con-
tribution in the factorized limit is fully parametrized by
the observables ~⌫i and ~µ. The form of hAA0 depends on
the assumed couplings of new physics to nuclei. For ex-
ample, if the new interaction couples to quarks, then we
expect that hAA0 / AA0 [17, 38]. The atomic transi-
tion dependent factors X

1,2 can be reasonably estimated
by a many-body simulation (see the next section). This
strategy is analogous to a search for new physics, say, at
the LHC, where all SM backgrounds are estimated using
data driven methods and Monte Carlo simulation is used
only in estimating the signal cross section.

Thus far, most of experimental measurements of iso-
tope shifts (except the samarium case, see below) have
been consistent with leading-order factorization. How-
ever, nonlinearity is expected to arise, as we briefly re-
view in the following, also from the SM higher-order con-
tributions that involve nuclear physics. Since currently,
these SM nonlinearities are not understood in quantita-
tive details, if a deviation from King linearity is observed.
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
3/2 (D states)], Ba+, Sr+,

Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing con-
straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,

⌫AA0

i ⌘ ⌫A
i � ⌫A0

i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0

1

and ⌫AA0

2

. In terms of the modified IS1,
m⌫AA0

i ⌘ ⌫AA0

i /µAA0 . this relation is,
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Equation (3) leads to a linear relation between m⌫

1

and m⌫
2

, giving rise to a straight line in the so-called
King plot of m⌫

2

vs m⌫
1

[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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i , m⌫
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2
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3
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⌘
. (4)

The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
����!
m�hr2i

in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
Eq. (2) becomes

�!m⌫i = Ki
�!mµ + Fi

����!
m�hr2i. (5)

1

Below we will adopt the notation of adding an m to “modi-

fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
�hr2iAA0/µAA0 .
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
3/2 (D states)], Ba+, Sr+,

Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing con-
straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].
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We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,

⌫AA0

i ⌘ ⌫A
i � ⌫A0

i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0
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. In terms of the modified IS1,
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Equation (3) leads to a linear relation between m⌫
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and m⌫
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, giving rise to a straight line in the so-called
King plot of m⌫
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vs m⌫
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[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
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Eq. (2) becomes
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
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5/2 vs S ! D
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with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].
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We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,
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i ⌘ ⌫A
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i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0
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. In terms of the modified IS1,
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Equation (3) leads to a linear relation between m⌫
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, giving rise to a straight line in the so-called
King plot of m⌫
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vs m⌫
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[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
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m�hr2i

in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
Eq. (2) becomes
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In this language leading order factorization implies the
following qualitative statement: any vector of reduced
isotope shifts, ~m⌫i must lie in the plane that is defined

by �!mµ and
����!
m�hr2i, as illustrated in the cartoon in the

left panel of Figure S1.

Note, that because the direction of
����!
m�hr2i in this space

is uncertain, theory does not tell us in which direction
this plane is oriented. However, by measuring two IS
vectors, �!m⌫

1

and �!m⌫
2

, we can test this statement by
asking whether the three vectors �!m⌫

1

, �!m⌫
2

, and �!mµ are
co-planar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!m⌫

2

= K
21
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21

�!m⌫
1

. Like King lin-
earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change which direction
in the plane

�!m⌫
1

and �!m⌫
2

will point, but the qualitative
statement of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a non-linearity measure
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In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. In our
geometrical picture it is the volume of the parallelepiped
defined by �!m⌫

1,2 and �!mµ. A given data set is considered
linear if NL is smaller than its first-order propagated er-
ror �
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=
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k where the sum runs over
all measured observables Ok (modified frequency shifts
and isotope masses) with standard deviation �k. We note
that the above triple product is not only the area of the
non-linear triangle but also the volume of the correspond-
ing parallelepiped.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now add a new physics contribution by adding a
third term to Eq. (2)

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + ↵
NP

Xi �AA0 , (7)

where we have introduced the Xi and �AA0 to
parametrize the resulting isotope shift. These too are
factorized, namely Xi depends on the form of the new
potential and on the electronic transition, while �AA0 de-
pends only on the nuclear properties. The parameter
↵

NP

is the NP coupling constant which we would like to
probe.

Let us first mention two cases of NP which we do
not expect to be able to probe by testing King linear-
ity. For short ranged NP (shorter than the nuclear size),
the electronic parameters Xi will be similar to those of
FS, namely Xi / Fi. Also, if the new physics couples
to electrons and nuclei as their electric charge (the case

of dark-photon), the nuclear parameters will be propor-
tional to the mass shift �AA0 / µAA0 . In both of these
cases the new physics term can be absorbed, the former
by redefining �hr2iAA0 and the later by redefining Ki.
There will also be cases in which NP can accidentally be
absorbed by redefining Fi. However, a long-ranged force
with coupling not proportional to the electric charge (and
barring an accidental cancelation) can be severely con-
strained by tests of King linearity.
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where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 . One can see that when new physics
can lead to a deviation from coplanarity if and only if (i)
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assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵
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It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵
NP

, Eq. (10), con-
tains theory input only in Xi and hAA0 which describe
how new physics a↵ects the IS. The standard model con-
tribution in the factorized limit is fully parametrized by
the observables ~⌫i and ~µ. The form of hAA0 depends on
the assumed couplings of new physics to nuclei. For ex-
ample, if the new interaction couples to quarks, then we
expect that hAA0 / AA0 [17, 38]. The atomic transi-
tion dependent factors X

1,2 can be reasonably estimated
by a many-body simulation (see the next section). This
strategy is analogous to a search for new physics, say, at
the LHC, where all SM backgrounds are estimated using
data driven methods and Monte Carlo simulation is used
only in estimating the signal cross section.

Thus far, most of experimental measurements of iso-
tope shifts (except the samarium case, see below) have
been consistent with leading-order factorization. How-
ever, nonlinearity is expected to arise, as we briefly re-
view in the following, also from the SM higher-order con-
tributions that involve nuclear physics. Since currently,
these SM nonlinearities are not understood in quantita-
tive details, if a deviation from King linearity is observed.
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D
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3/2 (D states)], Ba+, Sr+,
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times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,

⌫AA0

i ⌘ ⌫A
i � ⌫A0

i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0
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Equation (3) leads to a linear relation between m⌫

1

and m⌫
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, giving rise to a straight line in the so-called
King plot of m⌫

2

vs m⌫
1

[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
����!
m�hr2i

in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
Eq. (2) becomes
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fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
�hr2iAA0/µAA0 .

hAA0 ⌘ �AA0/µAA0

the plane spanned by �!mµ and
����!
m�hr2i

����!
m�hr2i

�!mµ

�!m⌫1

�!m⌫2

= ↵NPXi
~h

nonlinear King 
plot from NP

•X2≠ X1 F21 - long distance NP
•h - is not aligned with mν₁, mν₂, mμ

2

FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
3/2 (D states)], Ba+, Sr+,

Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing con-
straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].

II. FACTORIZATION OF NUCLEAR AND
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We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,

⌫AA0

i ⌘ ⌫A
i � ⌫A0
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IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as
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i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0
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and m⌫
2

, giving rise to a straight line in the so-called
King plot of m⌫
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[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
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in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
Eq. (2) becomes
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30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].
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We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,
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IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as
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i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0
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. In terms of the modified IS1,
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, giving rise to a straight line in the so-called
King plot of m⌫
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[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
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m�hr2i

in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
Eq. (2) becomes
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In this language leading order factorization implies the
following qualitative statement: any vector of reduced
isotope shifts, ~m⌫i must lie in the plane that is defined

by �!mµ and
����!
m�hr2i, as illustrated in the cartoon in the

left panel of Figure S1.

Note, that because the direction of
����!
m�hr2i in this space

is uncertain, theory does not tell us in which direction
this plane is oriented. However, by measuring two IS
vectors, �!m⌫

1

and �!m⌫
2

, we can test this statement by
asking whether the three vectors �!m⌫

1

, �!m⌫
2

, and �!mµ are
co-planar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!m⌫

2

= K
21

�!mµ+F
21

�!m⌫
1

. Like King lin-
earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change which direction
in the plane

�!m⌫
1

and �!m⌫
2

will point, but the qualitative
statement of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a non-linearity measure

NL =
1

2
(�!m⌫

1

⇥ �!m⌫
2

) · �!mµ . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. In our
geometrical picture it is the volume of the parallelepiped
defined by �!m⌫

1,2 and �!mµ. A given data set is considered
linear if NL is smaller than its first-order propagated er-
ror �

NL

=
p

⌃k(@NL/@Ok)2�2

k where the sum runs over
all measured observables Ok (modified frequency shifts
and isotope masses) with standard deviation �k. We note
that the above triple product is not only the area of the
non-linear triangle but also the volume of the correspond-
ing parallelepiped.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now add a new physics contribution by adding a
third term to Eq. (2)

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + ↵
NP

Xi �AA0 , (7)

where we have introduced the Xi and �AA0 to
parametrize the resulting isotope shift. These too are
factorized, namely Xi depends on the form of the new
potential and on the electronic transition, while �AA0 de-
pends only on the nuclear properties. The parameter
↵

NP

is the NP coupling constant which we would like to
probe.

Let us first mention two cases of NP which we do
not expect to be able to probe by testing King linear-
ity. For short ranged NP (shorter than the nuclear size),
the electronic parameters Xi will be similar to those of
FS, namely Xi / Fi. Also, if the new physics couples
to electrons and nuclei as their electric charge (the case

of dark-photon), the nuclear parameters will be propor-
tional to the mass shift �AA0 / µAA0 . In both of these
cases the new physics term can be absorbed, the former
by redefining �hr2iAA0 and the later by redefining Ki.
There will also be cases in which NP can accidentally be
absorbed by redefining Fi. However, a long-ranged force
with coupling not proportional to the electric charge (and
barring an accidental cancelation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes:
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) , (8)

where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 . One can see that when new physics
can lead to a deviation from coplanarity if and only if (i)

The new force is not short-range, X
2

6= X
1

F
21

; (ii) ~h is
not aligned with any linear combination of �!mµ, �!m⌫

1

or�!m⌫
2

.
By solving the set of equations (7) one finds an expres-

sion for ↵
NP

that is needed to yield a particular dataset
{�!m⌫
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↵
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=
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assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵

NP

. �↵NP =p
⌃k(@↵

NP

/@Ok)2�2

k. Hence, the sensitivity to probe
↵

NP

is lost in the limit where the denominator in Eq. (10)
vanishes, because the new physics contribution to non-
linerity is

NL
NP

=
↵

NP

2
(�!mµ ⇥ ~h) · (X

1

�!m⌫
2

� X
2

�!m⌫
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) . (10)

It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵
NP

, Eq. (10), con-
tains theory input only in Xi and hAA0 which describe
how new physics a↵ects the IS. The standard model con-
tribution in the factorized limit is fully parametrized by
the observables ~⌫i and ~µ. The form of hAA0 depends on
the assumed couplings of new physics to nuclei. For ex-
ample, if the new interaction couples to quarks, then we
expect that hAA0 / AA0 [17, 38]. The atomic transi-
tion dependent factors X

1,2 can be reasonably estimated
by a many-body simulation (see the next section). This
strategy is analogous to a search for new physics, say, at
the LHC, where all SM backgrounds are estimated using
data driven methods and Monte Carlo simulation is used
only in estimating the signal cross section.

Thus far, most of experimental measurements of iso-
tope shifts (except the samarium case, see below) have
been consistent with leading-order factorization. How-
ever, nonlinearity is expected to arise, as we briefly re-
view in the following, also from the SM higher-order con-
tributions that involve nuclear physics. Since currently,
these SM nonlinearities are not understood in quantita-
tive details, if a deviation from King linearity is observed.

new physics
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FIG. 1: Yb0 and Sr, Sr/Sr+ will be updated. Lim-
its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
3/2 (D states)], Ba+, Sr+,

Sr/Sr+, Yb/Yb+ and Yb+. For comparison, existing con-
straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,

⌫AA0

i ⌘ ⌫A
i � ⌫A0

i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as
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where two terms represent MS and FS respectively [16,
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A0 where mA and mA0
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The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
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[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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its on yeyn vs. the NP mass, m�. Constraints from exist-
ing IS data (solid lines, experimental resolution � [Hz] spec-
ified in the labels) for Ca+ (397 nm vs. 866 nm [20]) and
Yb0 (555.65 nm [21] vs. 399 nm [22]). IS projections (dashed
lines) for Ca+ [S ! D

5/2 vs S ! D
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straints from other experiments (shaded areas): yeyn from
fifth force [23, 24] (dark orange), ye from the (g� 2)e [25, 26]
times the best bound on yn from neutron scattering (n) [27–
30] (light blue) or yn from the SN 1987A [31] (light orange,
with O(1) uncertainties). ye, yn both from star cooling in
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II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization proper-
ties of IS which we use to probe new physics in this work.
Consider an atomic transition, denoted by i, between nar-
row atomic states and A and the A0. The di↵erence in
transition frequency between the isotope A and A0 is IS,
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i . (1)

IS at leading order receives contributions from two
sources, mass shift (MS) and field shift (FS). Mass shift
arises due to a correction to the kinetic energy of atomic
electrons due to the motion of the nucleus. For indepen-
dent electrons, this is just replacing me by the reduced
mass but if electrons are correlated, this could be orders
of magnitude larger. Field shift originates from di↵erent
contact interactions between electrons and nuclei in iso-
topes. Putting these two leading contributions together,

IS can be phenomenologically written as

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + . . . , (2)

where two terms represent MS and FS respectively [16,
37]. We define µAA0 ⌘ m�1

A � m�1

A0 where mA and mA0

the masses of isotopes A and A0.
The quantity �hr2iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr2iAA0 are purely nuclear quantities that do not de-
pend on the electronic transition i. Note, however, that
while µAA0 is known with high precision, while �hr2iAA0

is known only to a limited accuracy. The parameters Ki,
and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values nec-
essary in the observable we construct. Each term of Eq.
(2) is a product of a purely nuclear quantity and a purely
electronic quantity, resulting in the factorization of nu-
clear and electronic dependence. This is known as leading
order (LO) factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr2iAA0 giving a relation between the
isotope shift ⌫AA0
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Equation (3) leads to a linear relation between m⌫

1

and m⌫
2

, giving rise to a straight line in the so-called
King plot of m⌫

2

vs m⌫
1

[16]. It is important to stress
that the linearity of this equation holds regardless of the
precise values of of the K and F electronic parameters.
Testing linearity necessitates at least three independent
isotope pairs in two transition, which constitutes a purely
data driven test of LO factorization.

The formulae in our treatment of new physics will be
simplified greatly by introducing a geometrical descrip-
tion of LO factorization. It is thus worthwhile to un-
derstand King linearity in this language. As we will now
explain, King linearity is equivalent to coplanarity of vec-
tors. For each transition i, we can form a vector
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The nuclear parameters of field and mass shift, µAA0 and

�hr2iAA0 can also be written as vectors �!mµ and
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m�hr2i

in the same space (notice that �!mµ ⌘ (1, 1, 1)) and hence
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Below we will adopt the notation of adding an m to “modi-

fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
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globular clusters [32–34] (orange). The gray line at 17MeV
indicates yeyn needed for the Be anomaly [35, 36].
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In this language leading order factorization implies the
following qualitative statement: any vector of reduced
isotope shifts, ~m⌫i must lie in the plane that is defined

by �!mµ and
����!
m�hr2i, as illustrated in the cartoon in the

left panel of Figure S1.

Note, that because the direction of
����!
m�hr2i in this space

is uncertain, theory does not tell us in which direction
this plane is oriented. However, by measuring two IS
vectors, �!m⌫

1

and �!m⌫
2

, we can test this statement by
asking whether the three vectors �!m⌫

1

, �!m⌫
2

, and �!mµ are
co-planar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!m⌫

2

= K
21

�!mµ+F
21

�!m⌫
1

. Like King lin-
earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change which direction
in the plane

�!m⌫
1

and �!m⌫
2

will point, but the qualitative
statement of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a non-linearity measure

NL =
1

2
(�!m⌫

1

⇥ �!m⌫
2

) · �!mµ . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. In our
geometrical picture it is the volume of the parallelepiped
defined by �!m⌫

1,2 and �!mµ. A given data set is considered
linear if NL is smaller than its first-order propagated er-
ror �

NL

=
p

⌃k(@NL/@Ok)2�2

k where the sum runs over
all measured observables Ok (modified frequency shifts
and isotope masses) with standard deviation �k. We note
that the above triple product is not only the area of the
non-linear triangle but also the volume of the correspond-
ing parallelepiped.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now add a new physics contribution by adding a
third term to Eq. (2)

⌫AA0

i = Ki µAA0 + Fi �hr2iAA0 + ↵
NP

Xi �AA0 , (7)

where we have introduced the Xi and �AA0 to
parametrize the resulting isotope shift. These too are
factorized, namely Xi depends on the form of the new
potential and on the electronic transition, while �AA0 de-
pends only on the nuclear properties. The parameter
↵

NP

is the NP coupling constant which we would like to
probe.

Let us first mention two cases of NP which we do
not expect to be able to probe by testing King linear-
ity. For short ranged NP (shorter than the nuclear size),
the electronic parameters Xi will be similar to those of
FS, namely Xi / Fi. Also, if the new physics couples
to electrons and nuclei as their electric charge (the case

of dark-photon), the nuclear parameters will be propor-
tional to the mass shift �AA0 / µAA0 . In both of these
cases the new physics term can be absorbed, the former
by redefining �hr2iAA0 and the later by redefining Ki.
There will also be cases in which NP can accidentally be
absorbed by redefining Fi. However, a long-ranged force
with coupling not proportional to the electric charge (and
barring an accidental cancelation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes:

�!m⌫
2

=K
21

�!mµ+F
21

�!m⌫
1

+↵
NP

~h (X
2

�X
1

F
21

) , (8)

where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 . One can see that when new physics
can lead to a deviation from coplanarity if and only if (i)

The new force is not short-range, X
2

6= X
1

F
21

; (ii) ~h is
not aligned with any linear combination of �!mµ, �!m⌫

1

or�!m⌫
2

.
By solving the set of equations (7) one finds an expres-

sion for ↵
NP

that is needed to yield a particular dataset
{�!m⌫

1

, �!m⌫
2

, �!mµ}

↵
NP

=
(�!m⌫

1

⇥ �!m⌫
2

) · �!mµ

(�!mµ ⇥ ~h) · (X
1
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2

� X
2

�!m⌫
1

)
, (9)

assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵

NP

. �↵NP =p
⌃k(@↵

NP

/@Ok)2�2

k. Hence, the sensitivity to probe
↵

NP

is lost in the limit where the denominator in Eq. (10)
vanishes, because the new physics contribution to non-
linerity is

NL
NP

=
↵

NP

2
(�!mµ ⇥ ~h) · (X

1

�!m⌫
2

� X
2

�!m⌫
1

) . (10)

It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵
NP

, Eq. (10), con-
tains theory input only in Xi and hAA0 which describe
how new physics a↵ects the IS. The standard model con-
tribution in the factorized limit is fully parametrized by
the observables ~⌫i and ~µ. The form of hAA0 depends on
the assumed couplings of new physics to nuclei. For ex-
ample, if the new interaction couples to quarks, then we
expect that hAA0 / AA0 [17, 38]. The atomic transi-
tion dependent factors X

1,2 can be reasonably estimated
by a many-body simulation (see the next section). This
strategy is analogous to a search for new physics, say, at
the LHC, where all SM backgrounds are estimated using
data driven methods and Monte Carlo simulation is used
only in estimating the signal cross section.

Thus far, most of experimental measurements of iso-
tope shifts (except the samarium case, see below) have
been consistent with leading-order factorization. How-
ever, nonlinearity is expected to arise, as we briefly re-
view in the following, also from the SM higher-order con-
tributions that involve nuclear physics. Since currently,
these SM nonlinearities are not understood in quantita-
tive details, if a deviation from King linearity is observed.

the only theory inputs  
similar to data driven background estimation at the LHC

nonlinear King 
plot from NP

•X2≠ X1 F21 - long distance NP
•h - is not aligned with mν₁, mν₂, mμ
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1,2 can be reasonably estimated
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strategy is analogous to a search for new physics, say, at
the LHC, where all SM backgrounds are estimated using
data driven methods and Monte Carlo simulation is used
only in estimating the signal cross section.

Thus far, most of experimental measurements of iso-
tope shifts (except the samarium case, see below) have
been consistent with leading-order factorization. How-
ever, nonlinearity is expected to arise, as we briefly re-
view in the following, also from the SM higher-order con-
tributions that involve nuclear physics. Since currently,
these SM nonlinearities are not understood in quantita-
tive details, if a deviation from King linearity is observed.
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Then it is presently di�cult to distinguish the NP and
SM contributions to the nonlinearity. In this case there
are two options in which further insight on NP can be
obtained. The first requires that the theory of King non-
linearity would advance and enable us to subtract the
SM contributions, and in the process possibly gain new
insight on the nature of nuclear e↵ects in IS. Moreover,
since nonlinearity in the case of NP is universal and in
the case of SM specific to particular atomic species, a
comparison between measurements in di↵erent systems
will be beneficial. The second, relies on the fact that NP
forces are longer range than nuclear e↵ects which require
overlap of the electronic wavefunction with the nucleus.
Hence it might be possible to identify an observable that
is less a↵ected by the nucleus, but is still sensitive to the
presence of long-range new physics interactions. In this
regard, IS measurements involving Rydberg states might
provide a smoking gun for the above types of NP.

For the proposed method to be e↵ective, the element
and the specific transitions should be chosen carefully.
First, to make a significant progress as compared with
current precision, we consider narrow optical clock tran-
sitions. The most accurate frequency measurements to
date, with a relative error of 10�18 corresponding to sub-
Hz accuracy, have been performed on narrow optical-
clock transitions in laser-cooled atoms or ions [39–43].
Second, since the hyperfine interaction of electrons with
the nucleus is a source for King nonlinearity [44], we con-
sider only even isotopes without nuclear spin.

Apart from NP, also SM higher-order corrections are
expected to lead to non-linearities. We cannot make pre-
cise quantitative estimates of these higher-order e↵ects,
however, we find that the dominant e↵ect is due to correc-
tions to the FS operator (see [44–48] for relevant discus-
sions). Nonlinearity may arise from second-order e↵ects
mediated by the nucleus that would predominantly mix
states that have similar energy [44]. The second-order
contribution is given by m⌫II

i =
P

k |hk|Ô
FS

|ii|2/�Ek ,

where Ô
FS

is the FS operator, �Ek ⌘ Ei � Ek is the
energy di↵erence to the state k. Assuming that diago-
nal and o↵-diagonal elements of Ô

FS

are comparable in
size, as observed e.g. in samarium [44, 46], we can es-
timate these corrections as m⌫II

i ⇠ (m⌫I

i )
2/�E , where

m⌫I

i is the leading-order FS contribution to the transition
i and �E = mink[�Ek]. The transitions we propose in
the following involve states that are separated from other
levels by large energy gaps, leading to small higher-order
e↵ects. See [18] for a more detailed estimation of the
higher-order e↵ects, including MS contributions, for the
transitions considered below.

IV. CONTRIBUTION OF NEW BOSONS TO
ISOTOPE SHIFTS

In this section we discuss how theoretical IS predic-
tions are modified in the presence of hypothetical new
force carriers of spin s = 0, 1 or 2 and mass m� which

couple to electrons and neutrons with strength ye and
yn, respectively. The e↵ective spin-independent poten-
tial mediated by such bosons between the nucleus and its
bound electrons is V�(r) = ↵

NP

(A � Z)e�m�r/r, where
↵

NP

= (�1)syeyn/4⇡. Note that NP could also couple
to protons, though without a↵ecting the linearity of the
King plot, hence we neglect such coupling here.

To calculate the e↵ect of this NP potential on atomic
energies we use the “finite field” method where the po-
tential is added directly to the Dirac equation in our
many-body computations. The atomic structure cal-
culations are variants of the combination of configu-
ration interaction and many-body perturbation theory
(CI+MBPT) [49]. For the single-valence electron ions
Ca+ and Sr+, we create an operator ⌃̂ representing
core-valence correlations to second order in the residual
Coulomb interaction (seefor example [50]). This opera-
tor is added to the Dirac-Fock operator, along with the
NP potential, to generate self-consistent solutions. In
this approach, the sensitivity of a transition i between
electronic states a and b (i = a ! b) can be expressed

Xi =
1

A � Z

d!ab

d↵
NP

����
↵NP=0

, (11)

where !ab is the transition frequency evaluated as a func-
tion of ↵

NP

and the derivative is taken numerically at
↵

NP

= 0
For neutral Sr, Ca, and Yb, which have two valence

electrons above closed shells, we use the CI+MBPT
method as described in [51]. Briefly, we find the self-
consistent solution of the Dirac-Fock equations, includ-
ing the NP potential, for the closed-shell core (i.e. the
V N�2 potential). In this potential we generate a set
of B splines [52, 53] which form a complete basis set.
Valence-valence correlations are included to all orders us-
ing CI, while the core-valence correlations are included
using second-order MBPT to modify the radial integrals.
The Yb+ case is more complicated because of the hole
transition, 4f14 6s ! 4f13 6s2. For this ion we use the
particle-hole CI+MBPT method [54] which has previ-
ously been used for Hg+.

The many-body calculations can be cross-checked by
perturbation theory, which yields

Xi =

Z
d3r

e�m�r

r

⇥| b(r)|2 � | a(r)|2⇤ , (12)

where | (r)|2 is the electron-density evaluated in the ab-
sence of NP, and hAA0 = AA0 amu for the NP contri-
bution in Eq. (7). As an additional cross-check of our
many-body calculation, we used GRASP2K [55] to evalu-
ate | (r)|2 and compute Xi using Eq. (12) for several
Ca+ transitions. We found good agreement between the
two methods.

We identify three regions of NP interaction range, sep-
arated by the electron wavefunction size, a

0

/(1+ne), and
the nuclear charge radius, rN ⇠ A1/3 ⇥ (200 MeV)�1.
Here a

0

⇡ (4 keV)�1 is the Bohr radius and ne is the

↵NP =
yeyn
4⇡

1st order perturbation theory and 
multi-body perturbation theory

hAA0 / AA0
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Then it is presently di�cult to distinguish the NP and
SM contributions to the nonlinearity. In this case there
are two options in which further insight on NP can be
obtained. The first requires that the theory of King non-
linearity would advance and enable us to subtract the
SM contributions, and in the process possibly gain new
insight on the nature of nuclear e↵ects in IS. Moreover,
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the case of SM specific to particular atomic species, a
comparison between measurements in di↵erent systems
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the nucleus is a source for King nonlinearity [44], we con-
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cise quantitative estimates of these higher-order e↵ects,
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mediated by the nucleus that would predominantly mix
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i =
P

k |hk|Ô
FS

|ii|2/�Ek ,

where Ô
FS

is the FS operator, �Ek ⌘ Ei � Ek is the
energy di↵erence to the state k. Assuming that diago-
nal and o↵-diagonal elements of Ô

FS

are comparable in
size, as observed e.g. in samarium [44, 46], we can es-
timate these corrections as m⌫II

i ⇠ (m⌫I

i )
2/�E , where

m⌫I

i is the leading-order FS contribution to the transition
i and �E = mink[�Ek]. The transitions we propose in
the following involve states that are separated from other
levels by large energy gaps, leading to small higher-order
e↵ects. See [18] for a more detailed estimation of the
higher-order e↵ects, including MS contributions, for the
transitions considered below.

IV. CONTRIBUTION OF NEW BOSONS TO
ISOTOPE SHIFTS

In this section we discuss how theoretical IS predic-
tions are modified in the presence of hypothetical new
force carriers of spin s = 0, 1 or 2 and mass m� which

couple to electrons and neutrons with strength ye and
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NP

(A � Z)e�m�r/r, where
↵

NP
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(CI+MBPT) [49]. For the single-valence electron ions
Ca+ and Sr+, we create an operator ⌃̂ representing
core-valence correlations to second order in the residual
Coulomb interaction (seefor example [50]). This opera-
tor is added to the Dirac-Fock operator, along with the
NP potential, to generate self-consistent solutions. In
this approach, the sensitivity of a transition i between
electronic states a and b (i = a ! b) can be expressed

Xi =
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↵NP=0
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where !ab is the transition frequency evaluated as a func-
tion of ↵
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and the derivative is taken numerically at
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= 0
For neutral Sr, Ca, and Yb, which have two valence

electrons above closed shells, we use the CI+MBPT
method as described in [51]. Briefly, we find the self-
consistent solution of the Dirac-Fock equations, includ-
ing the NP potential, for the closed-shell core (i.e. the
V N�2 potential). In this potential we generate a set
of B splines [52, 53] which form a complete basis set.
Valence-valence correlations are included to all orders us-
ing CI, while the core-valence correlations are included
using second-order MBPT to modify the radial integrals.
The Yb+ case is more complicated because of the hole
transition, 4f14 6s ! 4f13 6s2. For this ion we use the
particle-hole CI+MBPT method [54] which has previ-
ously been used for Hg+.

The many-body calculations can be cross-checked by
perturbation theory, which yields
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⇥| b(r)|2 � | a(r)|2⇤ , (12)

where | (r)|2 is the electron-density evaluated in the ab-
sence of NP, and hAA0 = AA0 amu for the NP contri-
bution in Eq. (7). As an additional cross-check of our
many-body calculation, we used GRASP2K [55] to evalu-
ate | (r)|2 and compute Xi using Eq. (12) for several
Ca+ transitions. We found good agreement between the
two methods.

We identify three regions of NP interaction range, sep-
arated by the electron wavefunction size, a

0

/(1+ne), and
the nuclear charge radius, rN ⇠ A1/3 ⇥ (200 MeV)�1.
Here a

0

⇡ (4 keV)�1 is the Bohr radius and ne is the
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FIG. 1. Constraints on a Z0 gauge boson from U(1)B�L.
KLV bound from existing IS data: Ca+ with uncertainty
� ' 0.1MHz (397 nm vs. 866 nm [32], solid red line). KLV
projections for � = 1Hz assuming linearity in Ca+ (S ! D
transitions, red, dashed), Sr+ (blue, dotted), Sr/Sr+ (blue,
dashed), and Yb+ (black, dash-dotted) [26]. For compar-
ison, bounds from fifth-force searches via the Casimir ef-
fect [41, 42] (blue), neutron scattering [43–45] (orange), Ry-
dberg states [46–48] (dark blue), energy level shifts in H
and He [11] (turquoise), ⌫ � e scattering at GEMMA and
Borexino [49] (purple), and beam dump experiments [2, 3, 50]
(green). Astrophysical and cosmological probes (beige): su-
pernova 1987A with O(1) uncertainties [51–53] (SN, the area
below the dotted line), horizontal branch stars [51, 54–57]
(HB, the area left of the dashed line) and BBN viaN

e↵

[58, 59]
(the area above the solid line).

1. Laboratory bounds

The existence of a fifth force is severely constrained for
a mass MZ0 . 100 eV by experiments testing the Casimir
e↵ect [41, 42].

In contrast to KLV, other atomic precision measure-
ments such as energy level shifts in Rydberg states [46–
48] and in s- and p-states of atomic H and hydrogen-like
He+ [11] provide bounds on ypye where yp is the proton
coupling. In the massless limit, MZ0 ⌧ (1 + ne)/a0, the
NP potential probed by these observables simplifies to a
Coulomb potential. In this case the NP interaction is ab-
sorbed by a redefinition of the fine-structure constant ↵,
resulting in a weakening of the bounds. Due to its sensi-
tivity to yeyn, KLV is not a↵ected by this redefinition so
that its bound remains constant in the massless limit and
is the strongest among the atomic spectroscopy bounds
for mediator masses below 0.3 eV. The intersection of

FIG. 2. Existing bounds on the neutron coupling gn of a
new boson � from the neutron-electron scattering length
in Pb, Bi and noble gases denoted as neutron optics [43]
(orange, dashed); n-208Pb scattering at neutron energies of
En ⇠ 1 keV-26 keV [61] (green, dotted), 10 eV-10 keV [43]
(blue, solid) and up to 20 keV including interference of reso-
nant and non-resonant amplitudes [45] (purple, dotted); and
the comparison of the total to the forward scattering cross
section of neutrons on nuclei [44] (red, dash-dotted). For dis-
cussion see Sect. IVA1.

the Ca+ and Rydberg bound was determined following
Ref. [48] and lies below the mass range shown in Fig. 1.
Yet, one needs to keep in mind that for MZ0  0.3 eV
also other constraints apply, such as from the Casimir
e↵ect mentioned above or from tests for a deviation from
the Coulomb force, see e.g. Ref. [60].
Neutron scattering is a powerful probe of the interac-

tion between new bosons and neutrons over a wide mass
range. Among the neutron scattering experiments, neu-
tron optics [43] provides the strongest constraint on gn,
in this model equivalent to gB�L, in the mass range of
MZ0 . 500 eV. For 500 eV . MZ0 . 5 keV, the com-
parison of the total to the forward scattering cross sec-
tion [44] is most sensitive. Above MZ0 ⇠ 5 keV, the
neutron-lead (n-Pb) scattering [45] sets the strongest
bound. This method is based on the proposal by Ref. [61]
whose bounds are superseded by the ones reported in
Refs. [43, 45]. The collection of the various bounds is
shown in Fig. 2, the limit presented in Fig. 1 shows the
best bound for each mass. When comparing to KLV,
the considerable uncertainties on the neutron scattering
bounds need to be kept in mind [44, 62–64]. In par-
ticular, the uncertainties related to the electron-neutron
scattering length, various nuclear inputs, and the missing
higher-order terms in the neutron-scattering cross sec-
tion, are not easy to determine precisely. Similarly, the
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case, Eq. (8) yields

yeyn ⇡ (�51± 14) kHz

(5.7X
1557

�X

1083

)
, (10)

which is ⇠ 4� away from zero. Thus, it is not justified,
given such disagreement, to use the above to set limits on
NP. Note, however, that this large deviation is the mere
consequence of a known tension between the two tran-
sitions which may originate from underestimated uncer-
tainties [17]. Despite this circumstance, it remains inter-
esting to observe that in the case that the tension will be
resolved by refined QED calculations, the expected sen-
sitivity to yeyn is stronger by a factor ⇠ 6 relative to the
use of �hr2ie�scat

3,4 . In the (yet implausible) event that the
above deviation is an evidence for a new electron-neutron
interaction, the latter should be visible in other atomic
systems. For instance, Eq. (10) would imply a violation
of King linearity [8] in ytterbium ion clock transitions at
the O(100Hz) level [7].

Alternatively, �hr2i
3,4 can be extracted with high accu-

racy from muonic helium spectroscopy. The CREMA col-
laboration is currently conducting Lamb shift measure-
ments in muonic He+ aiming at a determination of 3,4He
charge radii with a relative uncertainty of 3⇥ 10�4 [54].
Assuming this will result in a �hr2i

3,4 value consistent
with e-He scattering and (electronic) helium spectro-
scopic data, the sensitivity to NP will hence be limited
by the experimental accuracy in helium IS measurements.
Moreover, future IS measurements in the 21S�23S tran-
sition down to O(100Hz) precision are expected [55],
with a comparable theory improvement. Hence, this
would improve sensitivity to NP e↵ects for that tran-
sition by two orders of magnitude. This is weaker than
the expected sensitivity from King linearity violation in
ytterbium ions, expected at large m� & 10MeV due to
the di↵erent mass dependence of the bound (m2

� versus

m

3

�). This is shown in Fig. 1.
Precision measurements are also achievable in heav-

ier (unstable) helium isotopes. For instance, IS between
A = 4 and A = 6, 8 isotopes for the 23S � 33P transi-
tion (389 nm) are measured with ⇠100 kHz accuracy [56].
However, the situation is di↵erent here since there is
no independent measurement of the 6,8He charge radii
and the FS cannot be reliably predicted for the 389 nm
transition. Nevertheless one can still derive an upper
bound on NP by saturating the di↵erence between the-
ory (assuming a point-nucleus) and experiment, which
corresponds to set �hr2iAA0 = 0 in Eq. (7). Since
�8,4

389

= �0.918MHz [56], the NP contribution is not
strongly constrained. Yet, the resulting bound on yeyn

is strengthened by a factor of A � A

0 = 4 which makes
it comparable to the IS bound from the 1083 nm transi-
tion. An order of magnitude improvement can be reached
with an independent determination of the relevant charge
radii.

Finally, IS in helium-like ions are also well measured.
The highest accuracy is obtained in lithium [57] and ni-
trogen [58] ions. The measured frequency shifts are be-

isotopes transition �
NP

⌫ �⌫
exp

�⌫
0

��hr2i

3He/4He
21S � 23S
23P � 2S

+9± 14
�2± 78

2.4
3.3

0.19
0.9

14
78

H/D
1S � 2S
2S � 12D

+76± 61
�0.5± 10

0.02
x

0.9
x

61
x

TABLE I: Allowed NP contributions �
NP

⌫ for the most accu-
rate IS measurements in helium and hydrogen isotopes, along
with the standard uncertainties from experiment, �⌫

exp

, QED
calculation (point-nucleus limit, �⌫

0

) and charge radius dif-
ference extracted from electron-scattering data, ��hr2i. All
numbers are in kHz.

tween A = 6, 7 in the 23S � 23P transition for Li+, and
between A = 14, 15 in the 21S � 23P transition for N5+.
The nuclear charge radii of lithium are extracted from
electron-scattering data with 2% accuracy [], while the
nitrogen radii are obtained with about 4% accuracy from
measuring X-ray lines in muonic atoms with [59] [check
refs and precision]. In both cases the theory prediction
is also limited by unknown QED contributions of order
[...]

Further precision measurements with boron and car-
bon ions are also underway [17].

B. Hydrogen-deuterium shifts

Hydrogen-deuterium shifts are complementary probes
of new electron-neutron interactions. The most accurate
IS measurement is for the 1S� 2S transition (121.6 nm),
with ⇠ 10�11 relative uncertainty [60, 61]. The QED
calculation is less precise by a factor of ⇠ 60, being
equally limited by the experimental value of the proton-
to-electron and deuteron-to-electron mass ratios as well
as higher-order corrections to the Lamb shift and nu-
clear polarizability [60]. Additional IS measurements ex-
ist with lower precision, including the 2S�nS/D transi-
tion series for n = 8, 12 states [62–64], and the frequency
di↵erences [65]

⌫

L
LS

⌘ ⌫

2S�4L � 1

4
⌫

1S�2S , (11)

with L = S,D. The latter are constructed such that
the leading contribution from Coulomb-like potentials
cancels out, thus making it directly sensitive to Lamb
shift (LS) corrections. As a result, ⌫L

LS

observables be-
come less sensitive to NP with an interaction range longer
than the atomic size ⇠ a

0

= (↵me)�1 ⇡ (4 keV)�1. All
transitions in the 2S�nS/D series have comparable sen-
sitivity to NP and we consider only the 2S � 12D tran-
sition for illustration.
Here again, the FS contributions are least known the-

oretically as they are limited by the charge radius di↵er-
ence �hr2i

2,1 between the deuteron and the proton. The

isotope shift
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FIG. 3. 95% CL bounds on ye and yn for a protophobic vector
boson of mass mX = 17MeV. The gray region represents the
required and allowed couplings to explain the 8Be anomaly.
The dashed lines show the projected upper bounds on the
couplings from KLV measurements in Sr/Sr+ and Yb+.

V. CONCLUSIONS

In this work we extended the proposal of Ref. [26] to
constrain New Physics (NP) by means of isotope shift
spectroscopy to enable the inclusion of larger data sets
with an arbitrary number of atomic transitions and iso-
tope pairs. As an application of the King linearity viola-
tion (KLV) observable to bound NP couplings, we eval-
uated the constraints resulting from existing data sets of
two di↵erent atomic systems (Ca+ and Yb).

We compare the existing KLV bounds and near-future
projections to present constraints in various models that
can potentially be probed by isotope shifts.

• B�L: The MZ0 -gB�L space is already largely con-
strained by astrophysical and cosmological bounds.
Complementary laboratory probes, however, are
not yet able to confirm those bounds in certain ar-
eas of the parameter space. Here KLV has the po-
tential to become the strongest laboratory bound
for 300 eV . MZ0 . 1MeV.

• Higgs portal: While KLV bounds on standard
Higgs portals are weaker than existing laboratory
bounds, KLV can supersede them in the case of an
enhanced electron or suppressed neutron coupling.
For an enhancement (suppression) by a factor of 10,
KLV could even set the strongest of all bounds in
the range 350 keV . m� . 1MeV. Such a scenario
can be realized e.g. in the leptonic Higgs portal.

• Chameleon: KLV will be able to set the strongest
lower bound M > 500TeV on the interaction scale
of the chameleon with matter.

• Be anomaly: With the anticipated precision, KLV
will fully explore the coupling range of a protopho-
bic vector boson with mass mX = 17MeV needed
to reproduce the observed anomaly in 8Be decays.

ACKNOWLEDGMENTS

We thank Cedric Delaunay and Yotam Soreq for useful
discussions and for carefully reading our draft.
The work of GP is supported by grants from the BSF,

ERC, ISF, Minerva, and the Weizmann- UK Making
Connections Programme.

[1] J. Alexander et al. in Dark Sectors 2016 Workshop:
Community Report. 2016. arXiv:1608.08632
[hep-ph].

[2] R. Essig, P. Schuster, and N. Toro, “Probing Dark
Forces and Light Hidden Sectors at Low-Energy e+e-
Colliders,” Phys. Rev. D80 (2009) 015003,
arXiv:0903.3941 [hep-ph].

[3] R. Essig, P. Schuster, N. Toro, and B. Wojtsekhowski,
“An Electron Fixed Target Experiment to Search for a
New Vector Boson A’ Decaying to e+e-,” JHEP 02
(2011) 009, arXiv:1001.2557 [hep-ph].

[4] B. Batell, M. Pospelov, and A. Ritz, “Probing a
Secluded U(1) at B-factories,” Phys. Rev. D79 (2009)
115008, arXiv:0903.0363 [hep-ph].

[5] B. Batell, M. Pospelov, and A. Ritz, “Exploring Portals
to a Hidden Sector Through Fixed Targets,” Phys. Rev.
D80 (2009) 095024, arXiv:0906.5614 [hep-ph].

[6] E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro,

“Physics motivation for a pilot dark matter search at
Je↵erson Laboratory,” Phys. Rev. D90 no. 1, (2014)
014052, arXiv:1403.6826 [hep-ph].

[7] B. A. Dobrescu and C. Frugiuele, “GeV-Scale Dark
Matter: Production at the Main Injector,” JHEP 02
(2015) 019, arXiv:1410.1566 [hep-ph].

[8] P. Coloma, B. A. Dobrescu, C. Frugiuele, and
R. Harnik, “Dark matter beams at LBNF,” JHEP 04
(2016) 047, arXiv:1512.03852 [hep-ph].

[9] C. Frugiuele, “Probing sub-GeV dark sectors via high
energy proton beams at LBNF/DUNE and
MiniBooNE,” arXiv:1701.05464 [hep-ph].

[10] T. Flacke, C. Frugiuele, E. Fuchs, R. S. Gupta, and
G. Perez, “Phenomenology of relaxion-Higgs mixing,”
arXiv:1610.02025 [hep-ph].

[11] J. Jaeckel and S. Roy, “Spectroscopy as a test of
Coulomb’s law: A Probe of the hidden sector,” Phys.
Rev. D82 (2010) 125020, arXiv:1008.3536 [hep-ph].

8


