IIIITiter

PROBING NEW LIGHT FORCEMEDIATORS BY ISOTOPE SHIFT

Yotam Soreq

Table-Top Experiments with Skyscraper Reach
Aug. 11, 2017

[^0]
the Standard Model (SM) works great but it is not a complete picture

the Standard Model (SM) works great but it is not a complete picture

New Physics (NP) is required but its scale is unknown

THE QUEST FOR NEW PHYSICS

THE QUEST FOR NEW PHYSICS

energy frontier
(TeV scale)

THE QUEST FOR NEW PHYSICS

energy frontier
(TeV scale)
intensity frontier
(MeV - GeV scale)

THE QUEST FOR NEW PHYSICS

energy frontier
(TeV scale)
intensity frontier
(MeV - GeV scale)
precision measurements
(up to MeV)

THE QUEST FOR NEW PHYSICS

energy frontier
(TeV scale)
intensity frontier
(MeV - GeV scale)
precision measurements

$$
(\text { up to } \mathrm{MeV})
$$

compare theory to
experiment

THE QUEST FOR NEW PHYSICS

energy frontier
(TeV scale)
intensity frontier
(MeV - GeV scale)
precision measurements
compare theory to experiment
observables which are insensitive to theory error

THE QUEST FOR NEW PHYSICS

energy frontier
(TeV scale)
intensity frontier
(MeV - GeV scale)
precision measurements
compare theory to experiment
(up to MeV)
hydrogen and helium

PRECISION SPECTROSCOPY

Ytterbium (Yb^{+})

PRECISION SPECTROSCOPY

Ytterbium (Yb^{+})

experimental error of E3 0.25 Hz
 relative error: 4×10^{-16}

Huntenmann et al. 2014 Gouda et al. 2014
in principle: $y_{e} y_{n}\left(\frac{125 \mathrm{GeV}}{m_{\phi}}\right)^{2}<4 \times 10^{-6}$
stronger than LHC current bounds

PRECISION SPECTROSCOPY

Ytterbium (Yb^{+})

experimental error
of E3 0.25 Hz
relative error: 4×10^{-16}
Huntenmann et al. 2014 Gouda et al. 2014
theory is not good enough

Isotope Shift

ISOTOPE SHIFT - KING PLOT

the same electronic transition, i, in two isotopes, A and A^{\prime}

$$
\nu_{i}^{A A^{\prime}} \equiv \nu_{i}^{A}-\nu_{i}^{A^{\prime}}
$$

ISOTOPE SHIFT - KING PLOT

the same electronic transition, i, in two isotopes, A and A^{\prime}

$$
\begin{array}{ccc}
\nu_{i}^{A A^{\prime}} \equiv \nu_{i}^{A}-\nu_{i}^{A^{\prime}}=K_{i} \mu_{A A^{\prime}}+F_{i} \delta\left\langle r^{2}\right\rangle_{A A^{\prime}}+\ldots \\
\mu_{A A^{\prime}} \equiv \frac{1}{m_{A}}-\frac{1}{m_{A^{\prime}}} & \text { electronic } & \text { nucleus } \\
\text { parameters } & \text { parameters }
\end{array}
$$

ISOTOPE SHIFT - KING PLOT

the same electronic transition, i, in two isotopes, A and A^{\prime}

$$
\left.\begin{array}{ccc}
& \begin{array}{c}
\text { Mass Shift }
\end{array} & \begin{array}{c}
\text { Field Shift } \\
\text { (short distance) }
\end{array} \\
\nu_{i}^{A A^{\prime}} \equiv \nu_{i}^{A}-\nu_{i}^{A^{\prime}}=K_{i} \mu_{A A^{\prime}}+ & F_{i} \delta\left\langle r^{2}\right\rangle_{A A^{\prime}}+\ldots \\
\mu_{A A^{\prime}} \equiv \frac{1}{m_{A}}-\frac{1}{m_{A^{\prime}}} & \begin{array}{c}
\text { electronic } \\
\text { parameters }
\end{array} & \text { nucleus } \\
m \nu_{i}^{A A^{\prime}} \equiv \nu_{i}^{A A^{\prime}} / \mu_{A A^{\prime}} & \text { parameters } \\
F_{21} \equiv F_{2} / F_{1} \\
K_{21} \equiv K_{2}-F_{21} K_{1} \\
i=1,2
\end{array}\right) m \nu_{2}^{A A^{\prime}}=K_{21}+F_{21} m \nu_{1}^{A A^{\prime}} .
$$

ISOTOPE SHIFT - KING PLOT

$$
\begin{aligned}
& \overrightarrow{m \nu}_{i} \equiv\left(m \nu_{i}^{A A_{1}^{\prime}}, m \nu_{i}^{A A_{2}^{\prime}}, m \nu_{i}^{A A_{3}^{\prime}}\right) \\
& \overrightarrow{m \mu} \equiv(1,1,1)
\end{aligned}
$$

$$
\overrightarrow{m \nu}_{i}=K_{i} \overrightarrow{m \mu}+F_{i} \overrightarrow{m \delta\left\langle r^{2}\right\rangle}
$$

ISOTOPE SHIFT - KING PLOT

$$
\begin{array}{ll}
\overrightarrow{m \nu}_{i} \equiv\left(m \nu_{i}^{A A_{1}^{\prime}}, m \nu_{i}^{A A_{2}^{\prime}}, m \nu_{i}^{A A_{3}^{\prime}}\right) & \overrightarrow{m \nu}_{i}=K_{i} \overrightarrow{m \mu}+F_{i} \overrightarrow{m \delta\left\langle r^{2}\right\rangle} \\
\overrightarrow{m \mu} \equiv(1,1,1)
\end{array}
$$

testing factorization only by data

ISOTOPE SHIFT - KING PLOT

existing isotope shift measurement of Ca^{+}

100 kHz error

$$
4 \mathrm{~S} \rightarrow 4 \mathrm{P}_{1} / 2
$$

Gebert et al. 2015

the

ISOTOPE SHIFT AND NEW PHYSICS

$$
\nu_{i}^{A A^{\prime}}=K_{i} \mu_{A A^{\prime}}+F_{i} \delta\left\langle r^{2}\right\rangle_{A A^{\prime}}+\alpha_{\mathrm{NP}} X_{i} \gamma_{A A^{\prime}}
$$

new physics

ISOTOPE SHIFT AND NEW PHYSICS

$$
\begin{array}{ll}
\begin{array}{l}
F_{21} \\
\hline \overrightarrow{m \mu} \\
\equiv F_{2} / F_{1} \\
h_{A A^{\prime}} \\
\equiv \gamma_{A A^{\prime}} / \mu_{A A^{\prime}} \\
\overrightarrow{m \nu}_{i}
\end{array}>\left(m \nu_{i}^{A A_{1}^{\prime}}, m \nu_{i}^{A A_{2}^{\prime}}, m \nu_{i}^{A A_{3}^{\prime}}\right)
\end{array} \quad \overrightarrow{m \nu_{2}}=K_{21} \overrightarrow{m \mu}+F_{21} \overrightarrow{m \nu}_{1}+\alpha_{\mathrm{NP}} \vec{h}\left(X_{2}-X_{1} F_{21}\right)
$$

ISOTOPE SHIFT AND NEW PHYSICS

$$
\begin{array}{ll}
F_{21} & \equiv F_{2} / F_{1} \\
\overrightarrow{m \mu} & \equiv(1,1,1) \\
h_{A A^{\prime}} & \equiv \gamma_{A A^{\prime}} \mu_{A A^{\prime}} \\
\overrightarrow{m \nu}_{i} & \equiv\left(m \nu_{i}^{A A_{1}^{\prime}}, m \nu_{i}^{A A_{2}^{\prime}}, m \nu_{i}^{A A_{3}^{\prime}}\right)
\end{array}
$$

- $X_{2} \neq X_{1} F_{21}$ - long distance NP
- h - is not aligned with $m \nu_{1}, m \nu_{2}, m \mu$
nonlinear King plot from NP

ISOTOPE SHIFT AND NEW PHYSICS

ISOTOPE SHIFT AND NEW PHYSICS

- $X_{2} \neq X_{1} F_{21}$ - long distance NP
- h - is not aligned with $m \nu_{1}, m v_{2}, m \mu$

nonlinear King plot from NP

$$
\alpha_{\mathrm{NP}}=\frac{\left(\overrightarrow{m \nu}_{1} \times \overrightarrow{m \nu}_{2}\right) \cdot \overrightarrow{m \mu}}{(\overrightarrow{m \mu} \times \vec{h}) \cdot\left(X_{1} \overrightarrow{m \nu}_{2}-X_{2} \overrightarrow{m \nu}_{1}\right)}
$$

the only theory inputs
similar to data driven background estimation at the LHC

ISOTOPE SHIFT AND NEW PHYSICS

- $X_{2} \neq X_{1} F_{21}$ - long distance NP
- h - is not aligned with $m \nu_{1}, m v_{2}, m \mu$

nonlinear King plot from NP

$$
\alpha_{\mathrm{NP}}=\frac{\left(\overrightarrow{m \nu}_{1} \times \overrightarrow{m \nu}_{2}\right) \cdot \overrightarrow{m \mu}}{(\overrightarrow{m \mu} \times \vec{h}) \cdot\left(X_{1} \overrightarrow{m \nu}_{2}-X_{2} \overrightarrow{m \nu}_{1}\right)}
$$

the only theory inputs
similar to data driven background estimation at the LHC
data consistent with linearity

CONSTRAINING LIGHT NEW BOSONS

new bosons with couplings to e and n
(spin independent)

$$
V_{\phi}(r)=\alpha_{\mathrm{NP}}(A-Z) \frac{e^{-m_{\phi} r}}{r}
$$

CONSTRAINING LIGHT NEW BOSONS

new bosons with couplings to e and n
(spin independent)

$V_{\phi}(r)=\alpha_{\mathrm{NP}}(A-Z) \frac{e^{-m_{\phi} r}}{r}$
$X_{i}=\int d^{3} r \frac{e^{-m_{\phi} r}}{r}\left[\left|\Psi_{b}(r)\right|^{2}-\left|\Psi_{a}(r)\right|^{2}\right]$
$1^{\text {st }}$ order perturbation theory and multi-body perturbation theory

CONSTRAINING LIGHT NEW BOSONS

new bosons with couplings to e and n (spin independent)

$$
V_{\phi}(r)=\alpha_{\mathrm{NP}}(A-Z) \frac{e^{-m_{\phi} r}}{r}
$$

$$
\alpha_{\mathrm{NP}}=\frac{y_{e} y_{n}}{4 \pi} \quad h_{A A^{\prime}} \propto A A^{\prime}
$$

$X_{i}=\int d^{3} r \frac{e^{-m_{\phi} r}}{r}\left[\left|\Psi_{b}(r)\right|^{2}-\left|\Psi_{a}(r)\right|^{2}\right]$
$1^{\text {st }}$ order perturbation theory and multi-body perturbation theory

	$m_{\phi}<4 \mathrm{keV}$	$4 \mathrm{keV}<m_{\phi}<50 \mathrm{MeV}$	$50 \mathrm{MeV}<m_{\phi}$
$\mathrm{V}_{\phi}(r) \sim$	$1 / r$	$\exp \left(-m_{\phi} r\right) / r$	$\delta(r) /\left(m_{\phi} r\right)^{2}$
X_{i}	constant	m_{ϕ} dependent	$X_{2}-X_{1} F_{21} \rightarrow 0$

CONSTRAINING LIGHT NEW BOSONS

CONSTRAINING LIGHT NEW BOSONS

CONSTRAINING LIGHT NEW BOSONS

POSSIBLE SYSTEMS

POSSIBLE SYSTEMS

- a system with:
- narrow optical clock transitions
- only even isotopes - at least 4

POSSIBLE SYSTEMS

- a system with:
- narrow optical clock transitions
- only even isotopes - at least 4
- current data:
- Ca $^{+}: 866 / 397 \mathrm{~nm}, \sigma \sim 0.1 \mathrm{MHz}$
- $\mathbf{Y b} \mathbf{b}^{0}: 556 / 399 \mathrm{~nm}, \sigma \sim 0.1-0.5 \mathrm{MHz}$

POSSIBLE SYSTEMS

- a system with:
- narrow optical clock transitions
- only even isotopes - at least 4
- current data:
- Ca ${ }^{+}: 866 / 397 \mathrm{~nm}, \sigma \sim 0.1 \mathrm{MHz}$
- $\mathbf{Y b}^{0}: 556 / 399 \mathrm{~nm}, \sigma \sim 0.1-0.5 \mathrm{MHz}$
- candidates for future measurements:
- $\mathrm{Ca}^{+}: S \rightarrow D_{5 / 2} / S \rightarrow D_{3 / 2}$
- $\mathrm{Sr}^{+}: S \rightarrow \mathrm{D}_{5 / 2} / S \rightarrow \mathrm{D}_{3 / 2}$
- $\mathbf{S r}^{+} / \mathbf{S r}: S \rightarrow P / S \rightarrow D_{5 / 2}$
- $\mathbf{Y} \mathbf{b}^{+}: S \rightarrow D_{3 / 2} / S \rightarrow F_{7 / 2}$

BOUNDSAND PROJECTIONS

BOUNDS AND PROJECTIONS

few electrons atoms

HYDROGEN AND HELIUM SPECTROSCOPY

direct comparison of theory to experiment (not limited by theory error)

bound Yukawa like force with spin independent interactions:

$$
\begin{gathered}
\frac{y_{e}\left(y_{p} Z+(A-Z) y_{n}\right)}{4 \pi} \frac{e^{-m_{\phi} r}}{r} \\
\frac{y_{e}^{2}}{4 \pi} \frac{e^{-m_{\phi} r_{12}}}{r_{12}}
\end{gathered}
$$

HYDROGEN AND HELIUM SPECTROSCOPY

direct comparison of theory to experiment (not limited by theory error)

bound Yukawa like force with spin independent interactions:

hydrogen

helium
isotope shift (He3-He4, H-D)
positronium
$\frac{y_{e}\left(y_{p} Z+(A-Z) y_{n}\right)}{4 \pi} \frac{e^{-m_{\phi} r}}{r}$

$$
\frac{y_{e}^{2}}{4 \pi} \frac{e^{-m_{\phi} r_{12}}}{r_{12}}
$$

$y_{e} y_{n}$
ye

HYDROGEN AND HELIUM SPECTROSCOPY

isotope shift

HYDROGEN AND HELIUM SPECTROSCOPY

electron interaction

SUMMARY

SUMMARY

- precision isotope spectroscopy can probe new light force-carriers with spin independent couplings to the electron and neutron
- King analysis has minimal theory inputs ("data-driven background")
- current constraints from King analysis are weak - but future measurements may improve the state-of-the-art bounds

BACKUP SLIDES

be ANomALY

Frugiuele, Fuchs, Perez, Schlaffer - 1602.04822

[^0]: C. Delaunay, C. Frugiuele, E. Fuchs, YS - work in progress
 J.C. Berengut, D. Budker, C. Delaunay, V.V. Flambaum, C. Frugiuele, E. Fuchs, C. Grojean, R. Harnik, R. Ozeri, G. Perez, YS - 1704.06005
 C. Delaunay, R. Ozeri, G. Perez, YS 1601.05087

